
ISBN: 978-3-8007-6205-7
PREPRINT - ©2023 Accellera/DVCon - accepted at Design & Verification Conference & Exhibition (DVCon) 2023

Evaluation of the RISC-V Floating Point Extensions
∗Niko Zurstraßen , ∗Lennart M. Reimann ,

∗Nils Bosbach , †Lukas Jünger , ∗Rainer Leupers
∗RWTH Aachen University, Institute for Communication Technologies and Embedded Systems

†MachineWare GmbH, Aachen, Germany

Abstract—Designing an Instruction Set Architecture (ISA) is
a challenging task that plays a crucial role in shaping the
characteristics of compute systems. However, the process of
designing an ISA is often shrouded in secrecy, as many relevant
ISAs are proprietary standards developed behind closed doors.
In recent years, a disruptive newcomer has emerged in the
ISA landscape, known as RISC-V. Unlike other ISAs, RISC-V
adopts an open-standard approach, embracing open discussions
and decision-making through online forums. The goal of this
work is to shed light on the design rationale behind the RISC-
V Floating-Point (FP) extensions F and D. To complement our
analysis, we conducted a practical assessment using a profiling
RISC-V Virtual Platform (VP) and a comprehensive set of 78
Floating Point (FP) benchmarks and applications. Using this VP,
we were able to track and analyze instruction distributions, FP
value distributions, and other data of interest. This allows us to
draw well-grounded conclusions and gain valuable insights into
the characteristics of the RISC-V F/D extensions.

Index Terms—RISC-V, Floating Point, Virtual Platforms, In-
struction Set Architecture, Benchmarks

I. INTRODUCTION

Designing an Instruction Set Architecture (ISA) is a de-
manding and intricate challenge. Wrong decisions may not
only have a temporary effect on Key Performance Indicators
(KPIs), but can also lead to problems in the longer term due to
technical debt. Therefore, it is crucial to make decisions in a
reasoned and evidence-based manner. However, especially the
latter point is impeded by the availability of publicly accessible
data. Due to most market-dominating ISAs being in the hands
of private companies, decision rationales are not disclosed
to the public. With the emergence of the open standard
RISC-V in the last years, the situation of scarce information
slowly began to change. Unlike other ISAs, RISC-V embraces
an open-standard approach, enabling open discussions and
decision-making through online forums. This inclusive ap-
proach facilitates the active participation of individuals and
organizations in the design process. Nevertheless, especially
the design of the RISC-V FP extensions F and D is difficult
to comprehend. These extensions were already part of the
initial RISC-V ISA [65] in 2011 and thus never part of a
public discourse. Only deficiencies and missing specifications
were publicly discussed in the following years. Yet, there
is no single document summarizing the motivation behind
every decision. Rather, information is spread around multiple
sources, like Google groups [15], GitHub repositories [16],
publications [32], [63], or mailing lists [17]. One of the goals
of this work is to summarize the design decisions for the FP
extensions F/D and shine light on aspects that were never up

to an open debate. To complement our theoretical analysis,
we conducted a practical evaluation using a RISC-V Virtual
Platform (VP) and an extensive set of 78 FP applications.
Through these experiments, we were able to meticulously
track and analyze the distribution of instructions, FP values,
and other data of interest. Based on this data, we evaluate
individual aspects of RISC-V FP extensions and identify
possible alternatives and improvements. The collected data
should not only help to evaluate decisions retrospectively, but
also provide guide rails for future endeavors. Much in the spirit
of the RISC-V philosophy, our data is freely accessible [68].

II. BACKGROUND & HISTORY

A. Design & History of the RISC-V F/D Extensions

To cover a wide range of applications, such as embedded
systems or high performance computing, the RISC-V ISA
provides several so-called extensions. Each of these extensions
describes a set of properties, like instructions or registers,
which can be assembled to larger systems in a modular
way. This includes the F/D extensions, which extend RISC-
V systems with 32-bit and 64-bit FP arithmetic respectively.
The extensions for 16-bit (Zfh) and 128-bit FP arithmetic (Q)
are not considered in this work due to their low popularity.
Opposed to many other extensions, the F/D extensions were
already introduced in the first version of the RISC-V ISA
manual [65] in 2011. To a large extent it implements features
as mandated in IEEE 754 [63]. In the following, we describe
the properties of the F extension, which can be transferred 1-
to-1 to D except for the bit width. The F extension adds 32
FP registers, 1 FP Control and Status Register (CSR), and 29
new instructions to RISC-V systems.

B. The Instructions

The heart of any ISA are its instructions. While at the
beginning of computer development, there were still significant
differences between implementations, today’s prevalent FP
specifications are similar to a large extent. This is also due to
standards such as IEEE 754, which specify the FP formats and
instructions to be supported by a conforming ISA. Also RISC-
V follows the latest IEEE 754 standard [46] from 2019. Table I
highlights the difference between all RISC-V F instructions
and their correspondents in x64 and ARMv8. It also reflects
the instruction’s IEEE 754 2019 status. As shown in the table,
the majority of RISC-V instructions are mandated by IEEE
754 and are consequently also prevalent in x64 and ARMv8.
Yet there are subtle differences, which are explained in the

https://orcid.org/0000-0003-3434-2271
https://orcid.org/0009-0003-5825-2665
https://orcid.org/0000-0002-2284-949X
https://orcid.org/0000-0001-9149-1690
https://orcid.org/0000-0002-6735-3033

ISBN: 978-3-8007-6205-7
PREPRINT - ©2023 Accellera/DVCon - accepted at Design & Verification Conference & Exhibition (DVCon) 2023

following. Note that indices in Table I correspond to the
subsequent paragraphs.

1) Sign Injection: The three sign injection instructions (FS-
GNJ, FSGNJN, FSGNJX) were contributed by J. Hauser [66]
and are unique to RISC-V [32]. Their main goal is to imple-
ment the operations copy (FMV in RISC-V), negate (FNEG
in RISC-V), abs (FABS in RISC-V), and copySign, which are
mandated by the IEEE 2019 standard [46]. This is achieved
by transferring the value from rs1 into rd while using a sign
based on the following description:

• FSGNJ rd, rs1, rs2: Sign from rs2. Implements copy if
rs1=rs2.

• FSGNJN rd, rs1, rs2: Negative sign from rs2. Implements
negate if rs1=rs2.

• FSGNJX rd, rs1, rs2: XORed signs of r1 and r2. Imple-
ments abs if rs1=rs2.

On x64 systems, the operations negate and abs are imple-
mented using AND and XOR instructions with a correspond-
ing bitmask.

2) Conversions and Rounding: For every possible con-
version from integer to float and vice versa, RISC-V as
well as ARM provide the required instructions as mandated
by the IEEE 754 standard. The standard also mentions 5
different rounding modes for these instructions. Both ARMv8
and RISC-V allow to directly encode this rounding mode in
the instruction. The same approach can be found AVX-512
where it is also possible to encode the rounding mode in the
instruction. On x64 systems, the rounding mode has to be set
in the FP control and status register. x64 lacks instructions to
convert from unsigned 64-bit integer to float and vice versa.

3) Comparisons: While RISC-V provides comparisons,
such as equal (FEQ.S) or less than (FLT.S) directly through

TABLE I
RISC-V INSTRUCTIONS COMPARED TO X64 AND ARMV8.

x64 SSE FMA ARMv8 RISC-V IEEE 754 2019
MOVSS LDR FLW mandated
MOVSS STR FSW mandated
VFMADDxxxSS FMADD FMADD.S mandated
VFMSUBxxxSS FMSUB FMSUB.S -
VFNMADDxxxSS FNMADD FNMADD.S -
VFNMSUBxxxSS FNSUB FNMSUB.S -
ADDSS FADD FADD.S mandated
SUBSS FSUB FSUB.S mandated
MULSS FMUL FMUL.S mandated
DIVSS FDIV FDIV.S mandated
SQRTSS FSQRT FSQRT.S mandated
MOVSS1 FMOV1 FSGNJ.S1(FMV.S) mandated
XORPS1 FNEG1 FSGNJN.S1 (FNEG.S) mandated
ANDPS1 FABS1 FSGNJX.S1 (FABS.S) mandated
MAXSS FMAX FMAX recommended
MINSS FMIN FMIN recommended
CVTSS2SI2 FCVT*S2 FCVT.W.S2 mandated
CVTSS2SI2 FCVT*U2 FCVT.WU.S2 mandated
MOVD FMOV FMV.X.W mandated
UCOMISS3 FCMP3 FEQ.S3 mandated
UCOMISS3 FCMPE3 FLT.S3 mandated
UCOMISS3 FCMPE3 FLE.S3 mandated
-4 -4 FCLASS.S4 mandated
CVTSI2SS SCVTF FCVT.S.W mandated
CVTSI2SS UCVTF FCVT.S.WU mandated
MOVD FMOV FMV.W.X mandated
CVTSS2SI2 FCVT*S2 FCVT.L.S2 mandated
-2 FCVT*U2 FCVT.LU.S2 mandated
CVTSI2SS2 SCVTF2 FCVT.S.L2 mandated
-2 UCVTF2 FCVT.S.LU2 mandated

instructions, ARM and x64 take a different approach. Here,
instructions like as FCMP and UCOMISS set flags in status
registers which can be used as comparisons in subsequent
instructions.

4) Classification Instruction: An instruction which cannot
be found in ARM and x64 is FCLASS. The instruction allows
to classify a FP number into several classes as shown in
Table II and return the result using a one-hot encoding. This
allows to quickly react on the classification by ANDing the
result with a bitmask. The instruction is recommended, but not
mandated by IEEE 754 1985 [44] and referred to as Class(x).
With IEEE 754 2008 [45], it was redeclared as mandatory and
renamed to class(x). The classification instruction can be found
in other ISAs as well, including Intel i960 (CLASS{R/RL})
[47], LoongArch (FCLASS.{S/D}) [9], IA-64 (FCLASS) [48],
and MIPS64 (CLASS.{S/D}, since release 6) [54]. PowerPC
implicitly encodes the class for each FP instruction in a register
called FPSCRFPRF [42]. It is also present in Intel’s 80-bit x87
extension as FXAM [49], which is the predecessor of SSE, but
Intel decided to remove this instruction from all subsequent
extensions. The purpose of the FCLASS instruction is to allow
software to react to unusual outputs from other FP instructions
with relatively low cycle overhead. In [63] A. Waterman
argues that library routines often branch at outputs like NaNs.
However, without a designated instruction, this check can take
“many more instructions”. To what extent cycles are saved is
not mentioned. The article also lacks information about how
often software uses the FCLASS instruction, and which exact
outputs trigger branching. More background data is provided
by us in Subsection V-A.

C. The Registers

In addition to the general purpose registers, the RISC-
V F extension adds 32 dedicated FP registers with a bit
width of FLEN=32 (FLEN=64 for D). During the development
of RISC-V, a unified register file was initially considered,
but a separate register was ultimately chosen because of the
following reasons [63]:

• Some types do not align with the architecture. For exam-
ple, using the D extension on an RV32 system.

• Allows for recoded formats (internal representation to
accelerate handling of subnormal numbers [6]).

• More addressable registers (the instruction implicitly se-
lects a set of registers).

• Natural register file banking simplifying the implementa-
tion of superscalar designs.

As explained in [63], a separate register file has the following
drawbacks:

• Register pressure increases unless the number of registers
is increased.

TABLE II
RETURN TYPES OF THE FCLASS INSTRUCTION.

rd meaning rd meaning rd meaning
0 −∞ 4 +0 8 sNaN
1 -normal 5 +subnormal 9 qNaN
2 -subnormal 6 +normal
3 −0 7 +∞

ISBN: 978-3-8007-6205-7
PREPRINT - ©2023 Accellera/DVCon - accepted at Design & Verification Conference & Exhibition (DVCon) 2023

NXDZ OF UFNV
012347-531-8

FLEN-0
RM ∈ {RNE,RTZ,RDN,RUP,RMM}

…

Reserved

f0

f31

fscr

FP register
file

RM

RDN = Round down
RNE = Round to nearest, ties to even
RTZ = Round towards zero
RUP = Round up
RNM = Round to nearest, ties to magnitude

OF = Overflow
DZ = Divide by zero
NV = Invalid
NX = Inexact
UF = Underflow

Fig. 1. Register file and FP control and status register of RISC-V.

• Context switching time might increase due to additional
register saves. To mitigate this issue, RISC-V introduced
dirty flags.

Besides general purpose FP registers, the F extension also adds
a CSR to configure rounding modes and indicate FP exceptions
(see Fig. 1). The exceptions do not cause traps to facilitate
non-speculative out-of-order execution [63].

D. Design of the RISC-V NaN

The FP standard according to IEEE 754 reserves part of the
encoding space for so-called Not a Number (NaN). A NaN
either represents the result of an invalid operations (quiet Not
a Number (qNaN)) or an uninitialized value (signaling Not a
Number (sNaN)). According to IEEE 754, a NaN is encoded
by a value which has all exponents set to 1, with a non-zero
mantissa. The encoding difference between a qNaN and an
sNaN was specified in IEEE 754 2008, stating that the MSB
in the mantissa functions as a quiet bit. These loosely and
changing definitions have led to a variety of NaN encodings
among ISAs (see Table III). The initial version of the 2011
RISC-V ISA manual 1.0 [65] states that a canonical NaN
has a sign of 0 and all other bits are set. It also specifies
that the MSB is the quiet bit with 1 indicating a qNaN,
following the IEEE 754 standard in that regard. However,
this encoding was changed to ARM’s NaN as stated at the
3rd RISC-V Workshop [25] in 2016. It eventually found
influence RISC-V ISA manual version 2.1 [64]. According
to A. Waterman [63] the new encoding was chosen based on
the following arguments:

1) It is the same NaN as used in ARM and Java.
2) Clearing bits has lower hardware cost than setting bits.
3) It is the only qNaN that cannot be generated by quieting

an sNaN.
The reason behind the third argument is to distinguish prop-
agated from generated NaNs in case NaN propagation is
implemented. Yet, this remains a rather hypothetical argument,
as the RISC-V standard does not mandate NaN propagation.

TABLE III
QNANS OF DIFFERENT ISAS.

ISA sign significand
SPARC 0 11111111111111111111111

RISC-V < v2.1 0 11111111111111111111111
MIPS 0 01111111111111111111111

PA-RISC 0 01000000000000000000000
x64 1 10000000000000000000000

ARM 0 10000000000000000000000
RISC-V ≥ v2.1 0 10000000000000000000000

E. NaN Boxing
On 2017-03-19, A. Waterman opened a GitHub issue [62],

remarking that the undefined of behavior of FP load and
store instructions might lead to problems. At that time, storing
smaller than FLEN FP values did not have a specified memory
layout. For example, if a RISC-V system with D extension
loads a 32-bit FP value into register f0, and subsequently stores
the register using a 64-bit store, there is no defined memory
layout. It is only guaranteed that loading the value from the
same address reinstantiates the intended value.

The undefined memory layouts can be problematic in
multiple scenarios, as pointed out by A. Bradburry in his
RFC [30] on 2017-03-23. For example, when migrating tasks
on a heterogeneous System on a Chip (SoC), each core could
interpret the FP register file dump differently. To solve this
problem, A. Bradburry proposed multiple solutions, which
were then discussed in the RISC-V ISA-Dev group [31].
Among the most favored and ISA-compliant approaches were:

• Store 32-bit FP values in the lower half of a 64-bit
register. This approach is used by ARM64.

• Cast 32-bit FP values to 64 bit and perform appropriate
rounding and masking whenever 32-bit operations are
used. Implemented in POWER6 and Alpha.

• Encapsulate 32-bit FP values in a 64-bit FP NaN. Not
seen in any architecture before.

After discussing arguments of all approaches, the NaN-
boxing scheme was ultimately chosen as the solution and
added to the specification on 2017-04-13 [62]. This feature
saturates upper bits when working on FP data, which is
smaller than the architecture’s FP register width FLEN. If the
aforementioned RISC-V system loads a 32-bit FP, e.g. 2.5,
into register f0, the lower 32 bits of the register represent the
FP value, while the upper 32 bits of f0 are set to 1. Hence, the
register f0 reads as 0xffffffff40200000. Additionally, a 32-bit
value is only considered valid if the upper bits are saturated.
Otherwise, the value is interpreted as a negative qNaN. This
approach allows for additional debug information, which is not
available in other ISAs. As with most ISAs, a FP register file
dump does not allow to infer the currently saved data types.
However, with NaN boxing, the presence of saturated upper
bits allows to determine the data type with high certainty.
Because these special NaN values cannot be produced by
standard arithmetic instructions, as NaN propagation is not
mandated by RISC-V. Yet, there is a risk of confusion with
dynamically interpreted languages, which use a software-based
NaN boxing for encoding data types.

III. RELATED WORK

Analyzing instruction distributions in applications has been
conducted for various ISAs, such as x64 and ARM64. How-
ever, to the best of our knowledge, no such analysis has been
conducted specifically for RISC-V systems. In literature, two
approaches are commonly used to assess instruction distri-
butions. The static analysis approach, as used by [24], [43]
simply assesses the instruction occurrences in the binary. How-
ever, the results obtained from this method can be misleading,

ISBN: 978-3-8007-6205-7
PREPRINT - ©2023 Accellera/DVCon - accepted at Design & Verification Conference & Exhibition (DVCon) 2023

as the number of occurrences does not necessarily indicate
how often an instruction is actually executed. Moreover, this
approach reaches its limitations for self-modifying code and
dynamically interpreted languages. A more accurate and less
constrained approach is dynamic analysis, as used in [23],
[29], [39]. In dynamic analysis, the instruction distribution is
directly obtained from the execution of the benchmark. This
can be achieved by counting instructions in a simulator or by
utilizing compiler annotations. The latter has the disadvantage
of only counting instructions in the application’s user mode.
Ultimately, the instructions distribution should reflect what is
executed on the user’s system, including operating system,
drivers, and other aspects, which are indirectly related to
the executed benchmark. To obtain results that encompass
all executed instructions and side effects, a simulator-based
approach, as utilized in [29], [39], proves to be one of the few
viable methods. This is why we also conducted all experiments
on a profiling RISC-V simulator.

IV. METHODS

A. The Virtual Platform

To execute all 78 benchmarks, we used MachineWare’s
RISC-V simulator SIM-V [50]. The simulator was configured
to model a rv64imafdc CPU as part of a VP with 4 GiB
of main memory. For most benchmarks the VP runs an
Ubuntu 22.04 operating system. Some benchmarks run on
a minimal buildroot-configured Linux. The simulator was
modified to track the number of executed instructions and
other data of interest. To not accidentally track boot or non-
benchmark related instructions, the simulator was extended
by semihosting instructions that allow to reset and dump the
statistics. That means, before the execution of a benchmark,
the statistics were reset, which was followed by a dump
after the execution finished. In contrast to compiler-based
annotation, as for example in used in gcov [4], a simulator-
based approach allows to track every detail, reaching from
instructions in the kernel to closed-source libraries. Although
the proprietary simulator SIM-V was used for profiling, other
open-source simulators could also be adapted for this use
case. Due to its performance, QEMU [26] would be the
most suitable. The simulators Spike [34] and gem5 [27] are
also conceivable, but their relatively slow, interpreter-based
execution requires a significant amount of compute time.

B. The Benchmarks

The main criterion for the selection of the benchmarks was
the use of FP instructions. That is, all benchmarks listed in
Fig. 2 execute at least one FP instruction. Another concern
was that benchmarks should cover a variety of scenarios. From
high-performance computing (NPB [11]) over machine learn-
ing (OpenNN [14]) to graphics computation (glmark2 [5]);
a large spectrum of different applications is reflected in
chosen benchmarks. Additionally, attention was paid to the
presence of different programming languages. Depending on
the language, different peculiarities in the FP arithmetic can
arise. Therefore, we chose benchmarks in Fortran (NPB [11]),

SPEC CPU 2017 [20]
(1) 503.bwaves
(2) 507.cactuBSSN
(3) 508.namd
(4) 510.parest
(5) 511.povray
(6) 519.lbm
(7) 527.cam4
(8) 538.imagick
(9) 544.nab
(10) 549.fotonik3d
(11) 554.roms

FinanceBench [3]
(43) Black Scholes
(44) Bonds
(45) Monte Carlo

glmark2 [5]
(18) buffer
(19) build
(20) bump
(21) clear
(22) conditionals
(23) desktop
(24) effect2d
(25) function
(26) ideas
(27) jellyfish
(28) loop
(29) pulsar
(30) refract
(31) shading
(32) shadow
(33) terrain
(34) texture

NPB [11]
(12) NPB.bt.A
(13) NPB.cg.A
(14) NPB.ep.A
(15) NPB.ft.A
(16) NPB.mg.A
(17) NPB.sp.A

OpenNN [14]
(35) iris plant
(36) breast cancer
(37) simple approx
(38) simple class
(39) logical operations
(40) airfoil
(41) mnist
(42) outlier detection

Octane 2.0 [13]
(46) raytrace
(47) navierstoke

Other
(66) fbench [60]
(67) ffbench [61]
(68) linpack32 [8]
(69) linpack64 [8]
(70) whetstone [22]
(71) stream [21]
(72) lenet-infer
(73) alexnet-train
(74) cray [1]
(75) aobench [35]
(76) glxgears
(77) himeno [7]
(78) SciMark 2.0 [18]

CoreMark-PRO [2]
(50) loops-all-mid-10k
(51) linear alg-mid-100x100
(52) nnet test
(53) radix2-big-64k

NumPy [40]
(48) linalg
(49) scalar

smallpt [19]
(54) smallpt-c
(55) smallpt-cpp
(56) smallpt-java
(57) smallpt-erlang
(58) smallpt-numpy
(59) smallpt-python3

mibench [39]
(60) basicmath
(61) susan
(62) qsort
(63) lame
(64) rsynth
(65) fft

Fig. 2. All 78 benchmarks and their corresponding index for this work.

Javascript (Octane 2.0 [13]), C++ (FinanceBench [3]), Python
(NumPy [40]), and other programming languages. The com-
plete list of benchmarks can be found in Fig. 2. In total, the
78 benchmarks executed 80,653,539,756,271 instructions of
which 16,824,921,642,417 were part of the F/D extensions.

V. RESULTS & DISCUSSION

A. Instruction Distributions

A heatmap depicting the relative distribution of FP in-
structions per benchmark can be found in Fig. 5. Note that
this and other figures treat the F and D extension as a
single entity. For example, FLX refers to the sum of FLS
(32 bit) and FLD (64 bit). It can be seen that FP store
and load instructions are the most prevalent instruction in
nearly every benchmark. This stands in contrast to instructions
such as FCLASS, FMIN, or FMAX, which are often not
executed once. To get an overview of frequently and rarely
seen instructions, we accumulated the instruction distributions
for all benchmarks (see Fig. 3). The relative contribution of
each benchmark can be inferred from Fig. 4. Fig. 3 shows
that RISC-V FP instructions seem to follow an exponential
distribution. The instructions FLX (32%), and FSX (17%),
sum up to nearly 50% of all executed FP instructions. On
the other side of the spectrum, the FCLASS instruction only
occurs once every 13,812 instructions. On top of that, only
12 out of 78 benchmarks used this instruction at all. This
raises the question whether such an instruction should be part
of a RISC ISA. In the following, we provide answers by
analyzing the contexts of this instruction, considering possible
alternatives, and evaluating its hardware cost.

Fig. 3. Distribution of FP instructions accumulated over all benchmarks.

ISBN: 978-3-8007-6205-7
PREPRINT - ©2023 Accellera/DVCon - accepted at Design & Verification Conference & Exhibition (DVCon) 2023

F ext. D ext.

Fig. 4. Relative distribution of F (light blue) and D (blue) instructions and
total number of executed instructions (grey).

[1, 0.1)Rel. Occurence: [0.1, 0.01)

[0.01, 0.001) [0.001, 0) 0

Fig. 5. Relative distribution of FP instructions per benchmark.

ISBN: 978-3-8007-6205-7
PREPRINT - ©2023 Accellera/DVCon - accepted at Design & Verification Conference & Exhibition (DVCon) 2023

1 float __fmaxf(float x, float y) {
2 float r;
3 if ((_FCLASS (x) | _FCLASS (y)) & _FCLASS_SNAN)
4 return x + y;
5
6 asm ("fmax.s %0, %1, %2" : "=f"(r) : "f"(x), "f"(y));
7 return r;
8 }

Code 1. glibc implementation of std::fmax for RISC-V.

1) Abundance of FCLASS: As shown before, the FCLASS
instruction occurs infrequently, with many benchmarks not
only using it once. The benchmark glmark2-bump attains the
highest relative value, with 0.091% of all instructions being
FCLASS. Besides being present in all glmark benchmarks, it
also occurs in FinanceBench and SPEC 507.cactuBSSN. Since
FCLASS can appear in different contexts, we investigated the
reasons for its use in the benchmarks.

For all benchmarks, we could track down all usages of
the FCLASS instruction to glibc’s fmax/fmin function. The
corresponding C implementation for 32-bit FP is depicted in
Code 1. Here, one would intuitively expect only a RISC-V
fmax instruction, yet there are additional checks for sNaNs.
This is due to RISC-V adhering to the IEEE 754 standard
from 2019, where the maximum of an sNaN and numerical
value must return the latter. In glibc, however, this opera-
tion has to return a qNaN, making it compliant with older
IEEE 754 standards. To rectify this mismatch, additional
checks and treatments for sNaN are needed. As explained by
D. G. Hough [41], converting sNaN to qNaN in minimum/-
maximum functions, as in glibc and older IEEE 754 standards,
was a bug in the specification and entails awkward mathemat-
ical properties. The fix from IEEE 754 2019 is not yet present
in glibc. Other C standard libraries, such as musl [10] or
NewLib [12] directly map fmax and fmin to the underlying ISA
implementations inheriting their NaN-handling characteristics.
That means, if we link the benchmarks against musl or
NewLib instead of glibc, the number of executed FCLASS
instructions can be reduced to 0. Or in other words, using this
approach, FCLASS does not occur once in 78 benchmarks
executing trillions of instructions. Even though the IEEE
754 2019 standard mandates this instruction, we recommend
reconsidering its usage in the RISC-V ISA. We also believe
Intel came to the same conclusion, which is why extensions
after x87 do not include this instruction. Yet, excluding the
FCLASS instruction is associated with only little benefits in
terms of hardware cost. For a Synopsys ASIP Designer RISC-
V processor synthesized with Synopsys Design Compiler and a
28/32nm library, the FCLASS instruction accounted for 0̃.25%
of the FPU’s area excluding register file.

Before removing an instruction from an ISA, it should be
investigated, which combination of other instructions achieves
the same semantics. However, in the case of FCLASS, it is not
necessary to aim for a bit-exact reproduction. As mentioned
by A. Waterman [63], the purpose of FCLASS is to branch if
exceptional values such as NaN are encountered. Fig. 6 shows
both a typical assembly context for sNaN and alternatives
without FCLASS. As can be seen, a check for a certain FP

1 // fclass sNaN example
2 fclass.s x1, f0
3 andi x1, x1, 0x100
4 bnez x1, lbl-is-snan
5
6 // zero
7 fmv.w.x f1, x0
8 feq.s x1, f1, f0
9 bnez x1, lbl-is-zero
10
11 // positive zero
12 fmv.x.w x1, f0
13 bez x1, lbl-is-p-zero
14
15 // negative zero
16 fneg f0, f0
17 fmv.x.w x1, f0
18 bez x1, lbl-is-n-zero

19 // generic NaN
20 feq.s x1, f0, f0
21 beqz x1, lbl-is-nan
22
23 // quiet NaN
24 fmv.x.w x1, f0
25 lui x2, 0x7fc00
26 and x1, x1, x2
27 beq x1, x2 lbl-is-qnan
28
29 // signaling NaN
30 feq.s x1, f0, f0
31 fmv.x.w x2, f0
32 bexti x2, x2, 22
33 or x1, x1, x2
34 beqz x1, lbl-is-snan

Fig. 6. Typical FCLASS use case and FCLASS-less alternatives.

type using FCLASS requires 3 instructions. First, FCLASS
returns the value type in a one-hot encoding, then the type
of interest is extracted by bitmasking, and finally a branch is
taken depending on the previous result. If FCLASS is not used,
the same goals can be achieved with even less instructions
(see positive zero, or general NaN). For example, we can
exploit that comparisons with NaN values always return false,
allowing us to check for their presence in only one instruction.
Similar to FCLASS, all instructions used in Fig. 6 are also
lightweight and do not require any data memory accesses.

B. Value Distribution

1) Subnormal Numbers & Underflows: Subnormal numbers
and gradual underflow are one of the most controversial
features of the IEEE 754 standard [52]. On the one hand,
subnormal numbers bring numerically advantageous properties
like Sterbenz’ lemma [58], on the other hand, they increase
hardware cost, and their implementation is considered the most
challenging task in Floating Point Unit (FPU) design [57]. As
shown by numerous works, handling subnormal numbers can
reduce a CPU’s attainable throughput by more than 100× [28],
[33], [67]. Due to this possible performance degradation, Intel
introduced the so-called Flush To Zero (FTZ) mode with the
release of Streaming SIMD Extensions (SSE) in 1999 [59].
This mode allows to flush subnormal numbers to zero, increas-
ing the performance of applications with non-critical accuracy
requirements like real-time 3D applications. However, how
often subnormal numbers and underflows occur in practice
is not stated in any of the aforementioned works. Also other
works only provide anecdotal evidence and statements like
“gradual underflows are uncommon” [51].

Our results confirm that underflows and subnormals are
rather an exception. Out of 78 benchmarks, 60 did not raise an
underflow exception or have a single subnormal input operand.
The highest share of underflows occurs in MiBench susan
with 0.48% of all arithmetic instructions underflowing. The
relative number of underflows per benchmark is depicted in
Fig. 9. Accumulated over all benchmarks, underflows occurred
once every 7,992 instructions with subnormal inputs occurring
once every 3,875 operands. In summary, only a fraction of
FP applications would benefit from a FTZ mode. To what

ISBN: 978-3-8007-6205-7
PREPRINT - ©2023 Accellera/DVCon - accepted at Design & Verification Conference & Exhibition (DVCon) 2023

Fig. 7. Relative distributions of FP in and out values for 64-bit arithmetic instructions in the individual benchmarks. The blue line represents the average.

Fig. 8. Distribution of mantissas for arithmetic 64-bit instructions. The values were distributed into 256 different bins. The average is given by the blue line.

extent performance can be increased, ultimately depends on
the hardware implementation. Since RISC-V has a separate
FP register file, techniques such as recoded formats [6] can
be used to process subnormal numbers efficiently. Running
the subnormal arithmetic evaluation benchmark by Dooley et
al. [33] on the RISC-V-based StarFive VisionFive 2 shows no
performance degradation due to subnormal arithmetic. Thus,
the decision not to endow RISC-V with a FTZ mode, as in
ARMv8 or x64, is reasonable in our opinion.

2) Exponent Distribution: Although IEEE 754 FP is the
most widespread approximation of real numbers in computing,
other formats can be considered as well. A frequent criticism
of IEEE 754 FP is its nearly uniformly distributed accuracy.
According to many works [36]–[38], [55], most values in
practical applications are centered around 1, which is why
formats with tapered accuracy, like Gustafson’s posit [38],
accumulate less error in benchmarks. See Fig. 10, which
qualitatively depicts the accuracy of IEEE FP and posit. Since
our simulator captures the value ranges of all FP instructions,
we can subject this statement to thorough testing.

In Fig. 7 we present the exponent distribution of all in-
and outputs of 64-bit arithmetic instructions. As can be seen,
the values of most benchmarks are indeed centered near a
magnitude of 20 = 1. This provides initial evidence that
formats with a tapered accuracy, like the proposed RISC-V

 u
nd

er
flo

w
s

Fig. 9. Benchmarks with the highest relative share of underflows.

extension Xposit from [53], can reduce rounding errors for a
wide range of applications.

3) Mantissa Distribution: As shown in [56], some theoreti-
cal considerations, like finding the optimal radix for a number
format, require assumptions about the average distribution
of the mantissa. One reasonable choice is a logarithmical
distribution of mantissa values. As shown by R. W. Hamming,
arithmetic operations transform various input distributions to a
logarithmic distribution. Excluding several hotspots, also the
mantissa distributions of all executed benchmarks in Fig. 8
seem to follow this trend.

VI. CONCLUSION & OUTLOOK

In this work we showed how a modified RISC-V simulator
can be used to analyze the characteristics of the RISC-
V Floating Point (FP) extensions F and D. In total our
simulator executed more than 16 trillion FP instructions of
78 applications, precisely tracking the distribution of FP
of instructions, FP mantissa, FP exponent, and frequency
of underflows. As our most important finding, we saw a
significant underutilization of RISC-V’s FCLASS instruction.
Moreover, we could pinpoint all FCLASS usages to glibc’s
questionable implementation of the maximum and minimum
functions. If other C standard libraries than glibc are used, the
number of executed FCLASS instructions can be reduced to
0. We also presented lightweight alternatives to the FCLASS
instruction by emulating common uses cases with a handful
of other RISC-V instructions. Consequently, we recommend to
reconsider the role of FCLASS in the RISC-V FP extensions.

float

log(x)

accuracy

posit

Fig. 10. Qualitative depiction of floating point and posit accuracy.

ISBN: 978-3-8007-6205-7
PREPRINT - ©2023 Accellera/DVCon - accepted at Design & Verification Conference & Exhibition (DVCon) 2023

REFERENCES

[1] “c-ray,” https://github.com/jtsiomb/c-ray, accessed: 2023-07-13.
[2] “CoreMark®-PRO,” https://github.com/eembc/coremark-pro, accessed:

2023-07-13.
[3] “FinanceBench,” https://github.com/cavazos-lab/FinanceBench,

accessed: 2023-07-13.
[4] “gcov,” https://gcc.gnu.org/onlinedocs/gcc/Gcov.html, accessed: 2023-

07-13.
[5] “glmark2,” https://github.com/glmark2/glmark2, accessed: 2023-07-13.
[6] “HardFloat Recoding,” www.jhauser.us/arithmetic/HardFloat-

1/doc/HardFloat-Verilog.html, accessed: 2023-07-13.
[7] “Himeno Benchmark,” https://github.com/kowsalyaChidambaram/

Himeno-Benchmark, accessed: 2023-07-13.
[8] “linpack,” https://www.netlib.org/linpack/, accessed: 2023-07-13.
[9] “LoongArch Reference Manual Volume 1: Basic Architecture.”

[10] “musl,” https://musl.libc.org/, accessed: 2023-07-13.
[11] “NAS Parallel Benchmarks,” https://www.nas.nasa.gov/software/npb.

html, accessed: 2023-07-13.
[12] “Newlib,” https://sourceware.org/newlib/, accessed: 2023-07-13.
[13] “Octane 2.0,” https://github.com/chromium/octane, accessed: 2023-07-

13.
[14] “OpenNN Examples,” https://github.com/Artelnics/opennn/tree/master/

examples, accessed: 2023-07-13.
[15] “RISC-V ISA Dev Google Group,” https://groups.google.com/a/groups.

riscv.org/g/isa-dev, accessed: 2023-07-13.
[16] “RISC-V ISA Manual Github Repository,” https://github.com/riscv/

riscv-isa-manual, accessed: 2023-07-13.
[17] “RISC-V Working Groups Mailing List,” https://lists.riscv.org/g/main,

accessed: 2023-07-13.
[18] “SciMark 2.0,” https://math.nist.gov/scimark2/, accessed: 2023-07-13.
[19] “smallpt,” https://github.com/matt77hias/smallpt, accessed: 2023-07-13.
[20] “SPEC CPU 2017,” https://spec.org/cpu2017/, accessed: 2023-07-13.
[21] “STREAM benchmark,” https://www.cs.virginia.edu/stream/, accessed:

2023-07-13.
[22] “whetstone,” https://netlib.org/benchmark/whetstone.c, accessed: 2023-

07-13.
[23] “Analysis of x86 instruction set usage for dos/windows applications and

its implication on superscalar design,” in Proceedings of the Interna-
tional Conference on Computer Design, ser. ICCD ’98. USA: IEEE
Computer Society, 1998, p. 566.

[24] A. Akshintala, B. Jain et al., “X86-64 instruction usage among
c/c++ applications,” in Proceedings of the 12th ACM International
Conference on Systems and Storage, ser. SYSTOR ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 68–79.
[Online]. Available: https://doi.org/10.1145/3319647.3325833

[25] K. Asanovic, “3rd RISC-V Workshop: RISC-V Updates,”
https://riscv.org/wp-content/uploads/2016/01/Tues1000-RISCV-
20160105-Updates.pdf, 01 2016, accessed: 2023-07-13.

[26] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator.” 01 2005,
pp. 41–46.

[27] N. Binkert, B. Beckmann et al., “The Gem5 Simulator,” SIGARCH
Comput. Archit. News, 2011.

[28] J. Bjørndalen and O. Anshus, “Trusting floating point benchmarks - are
your benchmarks really data independent?” 06 2006, pp. 178–188.

[29] N. Bosbach, L. Jünger et al., “Entropy-based analysis of benchmarks
for instruction set simulators,” in RAPIDO2023: Proceedings of the
DroneSE and RAPIDO: System Engineering for constrained embedded
systems, ser. RAPIDO2023. New York, NY, USA: Association for
Computing Machinery, Jan. 2023, pp. 54–59, toulouse, France.

[30] A. Bradbury, “NaN Boxing RFC,” https://gist.github.com/asb/
a3a54c57281447fc7eac1eec3a0763fa, accessed: 2023-07-13.

[31] ——, “NaN Boxing ISA-Dev Group,” https://groups.google.com/
a/groups.riscv.org/g/isa-dev/c/ r7hBlzsEd8/m/z1rjr2BaAwAJ, 03 2017,
accessed: 2023-07-13.

[32] T. Chen and D. A. Patterson, “RISC-V Geneology,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2016-6, 2016.

[33] I. Dooley and L. Kale, “Quantifying the interference caused by subnor-
mal floating-point values,” 01 2006.

[34] R.-V. Foundation, “Spike RISC-V ISA Simulator,” https://github.com/
riscv-software-src/riscv-isa-sim, accessed: 2023-09-15.

[35] S. Fujita, “aobench,” https://github.com/syoyo/aobench, accessed: 2023-
07-13.

[36] A. Guntoro, C. De La Parra et al., “Next generation arithmetic for edge
computing,” in 2020 Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2020, pp. 1357–1365.

[37] J. Gustafson, “Posit arithmetic,” Mathematica Notebook describing the
posit number system, 2017.

[38] J. Gustafson and I. Yonemoto, “Beating floating point at its own game:
Posit arithmetic,” Supercomputing Frontiers and Innovations, vol. 4, pp.
71–86, 06 2017.

[39] M. Guthaus, J. Ringenberg et al., “Mibench: A free, commercially
representative embedded benchmark suite,” in Proceedings of the Fourth
Annual IEEE International Workshop on Workload Characterization.
WWC-4 (Cat. No.01EX538), 2001, pp. 3–14.

[40] C. R. Harris, K. J. Millman et al., “Array programming with NumPy,”
Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[41] D. G. Hough, “The ieee standard 754: One for the history books,”
Computer, vol. 52, no. 12, pp. 109–112, 2019.

[42] IBM, “PowerPC User Instruction Set Architecture Book I Version 2.01,”
2003.

[43] A. H. Ibrahim, M. B. Abdelhalim et al., “Analysis of x86 instruction set
usage for windows 7 applications,” in 2010 2nd International Conference
on Computer Technology and Development, 2010, pp. 511–516.

[44] “IEEE Standard for Binary Floating-Point Arithmetic,” IEEE, 1985.
[45] “IEEE Standard for Floating-Point Arithmetic,” IEEE, 2008.
[46] “IEEE Standard for Floating-Point Arithmetic,” IEEE, 2019.
[47] Intel, “80960KB Programmer’s Reference Manual.”
[48] ——, “Intel® IA-64 Architecture Software Developer’s Manual Volume

3: Instruction Set Reference,” 2000.
[49] ——, “Intel® 64 and IA-32 Architectures Software Developer’s Manual

Volume 1: Basic Architecture,” 2016.
[50] L. Jünger, J. H. Weinstock et al., “SIM-V: Fast, Parallel RISC-V

Simulation for Rapid Software Verification,” DVCON Europe 2022.
[51] W. M. Kahan, “Lecture Notes on the Status of IEEE Standard 754

for Binary Floating-Point Arithmetic,” https://people.eecs.berkeley.edu/
∼wkahan/ieee754status/IEEE754.PDF, accessed: 2023-07-13.

[52] W. M. Kahan and C. Severance, “An Interview with the Old
Man of Floating-Point,” https://people.eecs.berkeley.edu/∼wkahan/
ieee754status/754story.html, accessed: 2023-07-13.

[53] D. Mallasén, R. Murillo et al., “Percival: Open-source posit risc-v
core with quire capability,” IEEE Transactions on Emerging Topics in
Computing, vol. 10, no. 3, pp. 1241–1252, 2022.

[54] MIPS, “MIPS® Architecture For Programmers Volume II-A: The
MIPS64® Instruction Set Reference Manual Revision 6.05,” 2016.

[55] R. Morris, “Tapered floating point: A new floating-point representation,”
IEEE Transactions on Computers, no. 12, pp. 1578–1579, 1971.

[56] J.-M. Muller, N. Brisebarre et al., Handbook of Floating-Point Arith-
metic, 01 2010.

[57] E. Schwarz, M. Schmookler et al., “FPU implementations with denor-
malized numbers,” IEEE Transactions on Computers, vol. 54, no. 7, pp.
825–836, 2005.

[58] P. H. Sterbenz, “Floating-point computation,” 1973.
[59] S. Thakkur and T. Huff, “Internet Streaming SIMD Extensions,” Com-

puter, vol. 32, no. 12, pp. 26–34, 1999.
[60] J. Walker, “fbench,” https://www.fourmilab.ch/fbench/fbench.html, ac-

cessed: 2023-07-13.
[61] ——, “ffbench,” https://www.fourmilab.ch/fbench/ffbench.html, ac-

cessed: 2023-07-13.
[62] A. Waterman, “NaN Boxing Github Issue,” https://github.com/riscv/

riscv-isa-manual/issues/30, accessed: 2023-07-13.
[63] ——, “Design of the RISC-V Instruction Set Architecture,” 2016.
[64] A. Waterman, Y. Lee et al., “The RISC-V Instruction Set Manual,

Volume I: User-Level ISA, Version 2.1,” California Univ Berkeley Dept
of Electrical Engineering and Computer Sciences, Tech. Rep., 2016.

[65] ——, “The RISC-V Instruction Set Manual, Volume I: Base User-
Level ISA, Version 1,” EECS Department, UC Berkeley, Tech. Rep.
UCB/EECS-2011-62, vol. 116, 2011.

[66] ——, “The RISC-V Instruction Set Manual, Volume I: User-Level ISA,
Version 2.2,” 2017.

[67] M. Wittmann, T. Zeiser et al., “Short note on costs of floating point oper-
ations on current x86-64 architectures: Denormals, overflow, underflow,
and division by zero,” 06 2015.

[68] N. Zurstraßen, “Instruction and FPU Traces,” https://chciken.com/assets/
risc-v floating point/traces.zip, accessed: 2023-07-13.

https://github.com/jtsiomb/c-ray
https://github.com/eembc/coremark-pro
https://github.com/cavazos-lab/FinanceBench
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://github.com/glmark2/glmark2
www.jhauser.us/arithmetic/HardFloat-1/doc/HardFloat-Verilog.html
www.jhauser.us/arithmetic/HardFloat-1/doc/HardFloat-Verilog.html
https://github.com/kowsalyaChidambaram/Himeno-Benchmark
https://github.com/kowsalyaChidambaram/Himeno-Benchmark
https://www.netlib.org/linpack/
https://musl.libc.org/
https://www.nas.nasa.gov/software/npb.html
https://www.nas.nasa.gov/software/npb.html
https://sourceware.org/newlib/
https://github.com/chromium/octane
https://github.com/Artelnics/opennn/tree/master/examples
https://github.com/Artelnics/opennn/tree/master/examples
https://groups.google.com/a/groups.riscv.org/g/isa-dev
https://groups.google.com/a/groups.riscv.org/g/isa-dev
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
https://lists.riscv.org/g/main
https://math.nist.gov/scimark2/
https://github.com/matt77hias/smallpt
https://spec.org/cpu2017/
https://www.cs.virginia.edu/stream/
https://netlib.org/benchmark/whetstone.c
https://doi.org/10.1145/3319647.3325833
https://riscv.org/wp-content/uploads/2016/01/Tues1000-RISCV-20160105-Updates.pdf
https://riscv.org/wp-content/uploads/2016/01/Tues1000-RISCV-20160105-Updates.pdf
https://gist.github.com/asb/a3a54c57281447fc7eac1eec3a0763fa
https://gist.github.com/asb/a3a54c57281447fc7eac1eec3a0763fa
https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/_r7hBlzsEd8/m/z1rjr2BaAwAJ
https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/_r7hBlzsEd8/m/z1rjr2BaAwAJ
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/syoyo/aobench
https://doi.org/10.1038/s41586-020-2649-2
https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
https://people.eecs.berkeley.edu/~wkahan/ieee754status/754story.html
https://people.eecs.berkeley.edu/~wkahan/ieee754status/754story.html
https://www.fourmilab.ch/fbench/fbench.html
https://www.fourmilab.ch/fbench/ffbench.html
https://github.com/riscv/riscv-isa-manual/issues/30
https://github.com/riscv/riscv-isa-manual/issues/30
https://chciken.com/assets/risc-v_floating_point/traces.zip
https://chciken.com/assets/risc-v_floating_point/traces.zip

	Introduction
	Background & History
	Design & History of the RISC-V F/D Extensions
	The Instructions
	Sign Injection
	Conversions and Rounding
	Comparisons
	Classification Instruction

	The Registers
	Design of the RISC-V NaN
	NaN Boxing

	Related Work
	Methods
	The Virtual Platform
	The Benchmarks

	Results & Discussion
	Instruction Distributions
	Abundance of FCLASS

	Value Distribution
	Subnormal Numbers & Underflows
	Exponent Distribution
	Mantissa Distribution

	Conclusion & Outlook
	References

