
DOI: 10.23919/DATE56975.2023.10137178
PREPRINT - ©2023 IEEE - accepted at 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)

par-gem5: Parallelizing gem5’s Atomic Mode
∗Niko Zurstraßen , ∗José Cubero-Cascante , ∗Jan Moritz Joseph ,

†Li Yichao , †Xie Xinghua , ∗Rainer Leupers
∗RWTH Aachen University, Institute for Communication Technologies and Embedded Systems

†Huawei Technologies

Abstract—While the complexity of MPSoCs continues to grow
exponentially, their often sequential simulations could only benefit
from a linear performance gain since the end of Dennard scaling.
As a result, each new generation of MPSoCs requires ever longer
simulation times. In this paper, we propose a solution to this
problem: par-gem5–the first universally parallelized version of
the Full System Simulator (FSS) gem5. It exploits the host
system’s multi-threading capabilities using a modified conserva-
tive, quantum-based Parallel Discrete Event Simulation (PDES).
Compared to other parallel approaches, par-gem5 uses relaxed
causality constraints, allowing temporal errors to occur. Yet, we
show that the system’s functionality is retained, and the inaccuracy
of simulation statistics, such as simulation time or cache miss rate,
can be kept within a single-digit percentage. Furthermore, we
extend par-gem5 by a temporal error estimation that assesses the
accuracy of a simulation without a sequential reference simulation.
Our experiments reached speedups of 24.7× when simulating a
128-core ARM-based MPSoC on a 128-core host system.

Index Terms—Parallel Discrete Event Simulation, gem5, Full-
System Simulation

I. INTRODUCTION

The general trend in today’s CPU architectures is increased
core count and system complexity. This complicates the design
process, creating a need for a plethora of design tools to
understand the impact of architectural decisions. Full System
Simulators (FSSs) [5], [19], [22] are the backbone for computer
architects, as they allow evaluating architectural optimization
in the CPU’s pipeline, the cache system, and the core inter-
connects, modeling a real operating system that executes real
workloads. Key Performance Indicators (KPIs), such as power
consumption or compute performance, can be determined even
before physical prototypes are available.

A common problem of FSSs is their inability to simulate
massively parallel and complex systems, as their simulation
kernels usually only run on a single thread. The most prominent
example is gem5 [5]–the de facto standard open-source FSS
for ARM-based systems. It does not support multi-threaded
simulation, even though the simulated system can have over
100 cores. More than 1 MIPS accumulated is hardly achievable
even on the most modern computers, and the execution of
representative benchmarks takes days if not weeks. For exam-
ple, executing the popular SPEC2017 integer benchmark suite
natively on a modern host computer requires approximately
10 minutes. Simulating the same workload in gem5 modeling
a 64-core system requires more than two years. This issue is
only expected to get worse as the gap between the single-core
performance and the transistor count as a representative for the
system size increased in the last decades (see Fig. 1) and is
likely to continue so. If computer architects do not transition
to parallel FSS, the big freeze of simulation will be inevitable.

Fig. 1. Development of highest single-threaded PassMark results [2] and
transistors per CPU. From 2012 (Intel Xeon E3-1290 v2) to 2021 (Apple M1),
the single-threaded score increased by 73%, while the number of transistors
increased by 1042%.

To tackle this growing gap in simulation tools, multiple
solutions have been proposed to increase the simulation speed.
For example, trace-driven simulations like gem5’s ElasticTraces
[12], system emulation with KVM [18], or the Simpoint method
[17]. Although considerable speedups can be achieved with
these methods, this speedup is always based on an abstraction
of partial aspects of an FSS leading to significant inaccuracies.
Therefore, these methods do not replace but only approximate
FSSs. The only solution to close the gap between limits from
stagnating single-core performance in FSSs and the growing
complexity of systems is to execute the FSS in parallel. For
parallel simulations, the most crucial challenge arises from
the synchronization of events between different threads. It is
essential to find an efficient solution that does not break the
FSS’s functional correctness, but also ensures high performance
with a limited number of synchronizations.

In this work, we solve this issue by proposing a parallel
execution kernel for gem5. We use a modified synchronous,
conservative approach in the Parallel Discrete Event Simu-
lation (PDES) kernel with relaxed causality constraints. The
simulation time is divided into slices, called quanta, in which
event queues, including cores and caches, run independently
in parallel. Threads only synchronize their events along with
the barriers of the quanta at fixed times during the simulation.
Compared to other works, our approach accepts errors in
causality to increase simulation performance. In other words,
we trade a speedup from parallelism with simulation accuracy.
As the most important finding of this work, we show that this
approach retains the target system’s functional correctness, and
the errors in simulation statistics are small.

II. BACKGROUND

A. gem5’s Discrete Event Simulation

The gist of gem5 is a Discrete Event Simulation (DES)
engine. Objects in gem5, such as the CPU model, can schedule
events at a certain simulation time, or remove them if the

https://orcid.org/0000-0003-3434-2271
https://orcid.org/0000-0001-9575-0856
https://orcid.org/0000-0001-8669-1225
https://orcid.org/0000-0003-4856-1555
https://orcid.org/0000-0001-8823-8088
https://orcid.org/0000-0002-6735-3033

DOI: 10.23919/DATE56975.2023.10137178
PREPRINT - ©2023 IEEE - accepted at 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Event4

Ti
m

e

b

 schedule

postp
o
ne

Ti
m

eEvent0

Event2
Event3

Event1

Event4

Event4

Event3
Event2

Event1Event0

 schedule

a

Fig. 2. Example of scheduling events in gem5.

event has not yet been processed. A scheduled event is initially
located in an event queue, which is processed step by step and
in chronological order by the simulation engine. When the event
is processed, a function assigned to the event executed, fulfilling
implementation-specific tasks. For example, the tickEvent of
gem5’s atomic CPU executes the next instruction. In most
cases, events also schedule or deschedule other events, resulting
in a dependency graph, as depicted in Fig. 2 a. The dependency
graph G = (V,E) of a DES can be described by the following
mathematical model:

V ⊆ {(v, t, q) | v ∈ Events, t ∈ Z+, q ∈ EventQ} (1)
E ⊆ {((v0, t0, q0), (v1, t1, q1))|(vi, ti, qi) ∈ V ∧ t0 ≤ t1} (2)

The graph comprises a set of scheduled events/vertices V ,
whereby each event v has an associated timestamp t and an
event queue q. In the default sequential gem5 simulation, a
single event queue handles all events. Schedule or deschedule
dependencies refer to the edges E. Since the system is causal,
edges can only advance in time and never reach back to past
events. Due to dynamic dependencies, the exact shape of the
graph can only be determined to a limited extent during the
simulation. When all events have been processed or the
simulation stop event is reached, the simulation terminates.

B. Parallel Simulation in FSSs

Fundamental work on PDES was first published by Chandy
et al. [7] in 1979. The work shows how independent
processes are simulated in a distributed manner without
focusing on any specific use case. One of the most difficult
challenges of implementing any Parallel Discrete Event
Simulator (PDES) is the synchronization of the individual
threads. Depending on how synchronization is achieved,
simulators can be either classified as synchronous or
asynchronous [20].

In asynchronous simulations, as used in [22], [23], the
individual threads communicate their local time with each
other. Each thread keeps track of the times of all other
threads, to determine when it is safe to execute a given event.
This, however, poses the risk of situations where no event is
deemed safe. Consequently, asynchronous simulations require
a sophisticated deadlock prevention/recovery [11].

A synchronous simulator uses global synchronization
events to advance the simulation in a lockstep fashion. In its
simplest form, a synchronous simulation only parallelizes the
execution of all events scheduled for the same simulation

timestamp, also called delta cycle. Such an approach is used
in [8], [9], [20], Within a delta cycle, a simulator can exploit
parallelism, as there is no partial order for the given events.
However, the restriction to delta cycles limits the potential
performance gain [23]. To achieve greater speedups,
distance-based approaches, as used in [3], [16], only
synchronize every tq∆. This significantly increases the
exploitable parallelism, but poses the risk of causality errors
as there is no guarantee of a chronological execution order
for the events. To prevent these errors, most PDES
implementations fall back to either conservative or optimistic
methods [4].

With optimistic methods, causality errors are not prevented in
the first place. Instead, the simulation detects and corrects them.
The correction mechanism can be implemented by rolling back
the system to a known correct state and reiterating the error-
causing time slot with tighter synchronization. Examples of the
optimistic approach can be found in [6], [13], [14].

In contrast to optimistic approaches, conservative methods
prevent causality errors in the first place. This can be
achieved by using design-specific timing information, which
is either derived from the models or set manually. The
multiple simulation threads synchronize every tq∆, whereby a
lookahead of tla is provided for each thread. Causality can be
retained if tla ≥ tq∆. Conservative approaches are used in
[16], [23].

Although gem5 is one of the most popular FSSs, almost all
the aforementioned publications refer to the parallelization of
SystemC [8]–[10], [14], [20], [23] or other frameworks. The
only parallel extension of gem5 to date is dist-gem5 [16], a
work resulting from the consolidation of pd-gem5 and
multi-gem5. It can be classified as a synchronous,
conservative PDES. The focus of dist-gem5 is on simulating
distributed systems connected via a Network Interface
Controller (NIC). Each simulated node runs on its own gem5
instance and synchronizes with the other nodes at simulation
time intervals of tq∆, also called the quantum. Causality
errors are prevented by equating tq∆ with the simulated
latency of the NIC tNIC . This lookahead perfectly retains the
causality, but limits the applicability of dist-gem5 to the
simulation of distributed systems connected via NICs.

According to [5], parallelizing gem5 is one of the
community’s proclaimed future goals. But 10 years after the
paper’s publication, parallel gem5 did not progress beyond a
few lines of code primarily intended to support the Kernel
Virtual Mode (KVM) simulation mode. To the best of our
knowledge, a generalized parallel gem5 is not existent. Based
on this fundament, we implemented par-gem5; a parallelized
version of gem5 for the atomic mode, as described in the
following sections.

C. Timing Mode vs. Atomic Mode

Depending on accuracy and performance constraints, gem5
can be operated either in the so-called timing mode or atomic
mode. Similar concepts can be found in other frameworks, for
example, SystemC, where the modes are referred to as
approximately timed and loosely timed, respectively.

DOI: 10.23919/DATE56975.2023.10137178
PREPRINT - ©2023 IEEE - accepted at 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Fig. 3. Functional call diagram of gem5’s timing mode and atomic mode.

The timing mode allows for accurate modeling of complex
communication channels, where exchanging data between two
modules comprises multiple phases. In the simplest case,
there is only a request phase and response phase (see Fig. 3).
Between requesting and receiving data, a simulation time of
t∆ passes and there is also a possibility of rejecting
requests/responses by returning false instead of true. In
contrast to the timing mode, the atomic mode implements the
same functionality in one phase. With only one phase,
dynamic effects like outstanding requests or bus contention
cannot be modeled, reducing the accuracy of the simulation.
However, the lower number of function calls is beneficial for
the simulation performance and code complexity.
Furthermore, each transaction is finished in zero simulation
time, which aids the design of a thread-safe memory system
as shown in Section III-C. Note that a latency t∆ is returned
by the function call (see Fig. 3). This latency is not part of
the request/receive process, and it is up to the requester to
annotate it correctly in its following processing.

III. PARALLELIZING GEM5

A. Implementation of the PDES

The principle of the par-gem5 PDES is to increase the
number of events queues and simulation threads to N , and to
execute them in parallel instead of one simulation thread and
one event queue. Each simulation thread has its own local
time, which is synchronized globally every tq∆ seconds.
Hence, our implementation can be classified as a synchronous
simulation.

As mentioned in Section II, a synchronous approach faces
challenges in retaining causality. Usually, conservative or
optimistic algorithms are used to circumvent that, but neither
of these can be considered for our implementation. Optimistic
algorithms would require an intrusive checkpoint system,
which must be included from the beginning of the software
project. With more than 500 kilo Software Lines Of Code
(kSLOC), gem5 is already too far advanced in development.
For conservative algorithms, the event latency between the
individual threads must be known. This results in a rigid
simulation structure with clearly defined thread boundaries, as
for example seen in dist-gem5 [16]. Since our system is
supposed to be flexible, this approach is not an option either.

Contrary to conservative and optimistic approaches, our
chosen method allows causality errors. However, with
sophisticated event queue partitioning, their occurrence can be
reduced to a minimum, achieving a high speedup with low
inaccuracy. With our approach, causality errors can occur

Fig. 4. Mapping of objects to event queues for a simplified dual core system.

when an event (de)schedules another event outside the event
queue within a quantum (see Fig. 2 b):

((v0, t0, q0), (v1, t1, q1)) ∈ E ∧ q0 ̸= q1 (3)
i · tq∆ < t0, t1 < (i+ 1) · tq∆ (4)

For example, it is possible that event queue q0 is at the
beginning of the quantum (i · tq∆), while event queue q1 is
already at the end of the quantum ((i + 1) · tq∆) waiting for
synchronization. If an event in q1 is now scheduled with
t1 < (i + 1) · tq∆, this event will no longer be executed,
because the simulation time has already exceeded the point
t1. This scenario is depicted in Fig. 2 where Event 3 initially
attempts to cross-schedule an Event 4 into the event queue q0
within the same quantum.

One of the most important findings of our work is that in
the context of FSS the ”if” has a greater impact on the
simulation than the ”when” for most cross-scheduled events.
A timer interrupt, for instance, being issued a few
microseconds too late affects the simulation accuracy only
slightly, while a non-issued timer interrupt might break the
functionality of the whole system. Consequently, we
implemented a mechanism that postpones causality breaking
events to the next quantum border, as shown in Fig. 2 b.

Even though this mechanism deeply intervenes in the
simulation, it retains the system’s functionality. Most
benchmarks and the boot sequence can be executed correctly
(see Section IV). Our approach unlocks parallel simulation
for gem5, showing significant speedups closing the simulation
gap, while retaining the functional correctness and being
flexible enough to model any kind of system.

B. Assignment of Objects to Event Queues

In gem5, the individual simulated hardware modules are
referred to as simulation objects. The model for a CPU core,
a memory controller, or an attached UART device are
examples of simulation objects. A system is built by
instantiating objects hierarchically, replicating the structure of
the target hardware platform. Since simulation objects always
refer to an event queue, finding an assignment that minimizes
causality errors is one of the key challenges. We empirically
observed that exploiting the inherent concurrency of
multi-core architectures yields the best results. To achieve
this, we map simulation objects to a specific event queue
according to the following rules:

1) Each CPU subsystem has a dedicated event queue.
2) All other objects are assigned to the default q0.
The event queue assignment occurs during the initialization

phase. One simulation thread is created for each event queue.
Consequently, the total number of simulation threads is the

DOI: 10.23919/DATE56975.2023.10137178
PREPRINT - ©2023 IEEE - accepted at 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)

1 BaseCache::recvAtomic(...) {
2 port.lock();
3 if (xBarNeeded()) {
4 port.unlock(); // Prevent deadlocks from snoops.
5 port.lock_peer(); // Take ownership of XBar.
6 }
7 ... // Untouched gem5 cache code.
8 if (xBarNeeded()) {
9 port.unlock_peer();

10 } else {
11 port.unlock();
12 }
13 }
14
15 CoherentXBar::forwardAtomic(...) {
16 ...
17 p.lock_peer(); // Locks snoop target caches.
18 Tick latency = p->sendAtomicSnoop(pkt);
19 p.unlock_peer();
20 ...
21 }

Listing 1. Simplified C++ code of the thread-safe cache and crossbar model.

number of cores plus one. Fig. 4 shows a simplified block
diagram of a 2-core platform and the resulting event queue
assignment. The block Real View Platform Devices comprises
all peripheral devices, such as the generic interrupt controller,
system timers, real-time clock, and IO interfaces. It can be seen
that all objects of the CPU subsystem (core, TLBs, and private
L1 caches) are assigned to the same queue. This assignment
allows each CPU core to advance in the simulation using a
local time within the quantum borders. Memory accesses that
can be satisfied by the private L1 caches are handled by a single
simulation thread. All other modules, including the shared L2
cache, DDR memory controller, and peripherals, are put into a
separate event queue.

C. Thread-Safe Memory System

So far, this work has focused on the theoretical aspects of
PDES. However, a significant part of the work on par-gem5
was spent on the practical problem of thread safety. Since
gem5’s software stack was designed for sequential execution,
function calls or data accesses between objects assigned to
different event queues pose the risk of race conditions.

In our chosen assignment of event queues, this particularly
affects the communication from L1 caches to the crossbar
(see Fig. 4). We performed a flow analysis of transactions,
paying special attention to those moving between two or
more event queue domains. Based on this, we extended the
gem5 port class with a new locking functionality. Ports,
which gem5 uses to transfer transactions between modules,
now additionally the include the functions lock(),
unlock() and unlock_peer(), lock_peer(). These
can be used to unlock/lock the own or the peer’s recursive
mutex, respectively.

As presented in Listing 1 the new port class is used to
guarantee that only one cache at a time is accessing the
crossbar. Before a cache starts to process a CPU’s request, it
has to contend its port mutex (line 2). Once the mutex is
held, it is determined whether the request requires access to
the crossbar (line 3). Access is required for any transaction
that cannot be served locally and requires communication to
other caches or memories. For instance, read misses, write

misses, cache maintenance operations, or
load-linked/store-conditionals. If access is required, the cache
mutex is released to prevent deadlocks from incoming snoops,
and the crossbar mutex is contended using the
port.lock_peer() function (lines 4-5). Next, the default
gem5 cache mechanisms are executed (line 7), which might
include calls to the crossbar. Since the crossbar communicates
with other caches via snoop request, an additional lock (lines
17-19) ensures that the access does not lead to race
conditions. Note that a cache snoop can lead to writebacks
that need access to the crossbar in return. To avoid
deadlocking by multiple crossbar accesses, the ports use
recursive mutexes, allowing multiple accesses by the same
thread. Finally, any held mutex is released (lines 8-12).

To mitigate deadlocks with multi-hop interconnects, all
crossbars share the same static mutex. This approach still
leaves room for optimization since the locality of the data in
downstream caches (L2, L3, etc.) is not exploited optimally.
Leveraging this potential requires extensive changes to the
memory system that are left for future work.

D. Temporal Error Estimation

One of the biggest challenges of the proposed approach is
determining a quantum that yields an acceptable compromise
between accuracy and speedup. From a speedup perspective,
the largest possible quantum should be selected, since this
reduces the number of synchronization points and enables
better load balancing. For high accuracy, however, the
quantum should be as small as possible due to the lower
probability of temporal errors. In addition, determining the
influence of the quantum in the first place is not trivial. While
the speedup can be roughly estimated from the required
wall-clock time, the impact on accuracy requires a sequential
simulation as a reference point. Executing a sequential
simulation annihilates the speed-up benefits of par-gem5.

For this reason, we have extended par-gem5 with a novel
temporal error estimation. At the end of each parallel
simulation, an analytical worst-case estimation of the
temporal error is output as a simulation statistic. This
estimation helps the user to assess the accuracy of the
simulation without the need for a reference simulation.

The idea of our error estimation is to accumulate timing
errors of postponed events. For this purpose, par-gem5
records for each quantum i, which postponed event had the
largest shift ti,max pp in time caused by the
postpone-mechanism (see Fig. 2 b). It is assumed the
postponed event was on the program’s critical path,
prolonging the simulation by ti,max pp. By accumulating the
prolongation times ti,max pp over all quanta, the following
formula describes a worst-case temporal error estimation:

erel,t =
tsim,meas

tsim,meas −
∑Q

i=0 ti,max pp

−1 =
tsim,meas

tsim,est
−1 (5)

With Q being the number of simulated quanta and tsim,meas

being the measured simulation time. We validate the formula
by precisely detecting inaccurate simulations as shown in the
next section.

DOI: 10.23919/DATE56975.2023.10137178
PREPRINT - ©2023 IEEE - accepted at 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Fig. 5. Accumulated MIPS when executing bare-metal bubble sort with par-
gem5 using various quantum sizes.

IV. RESULTS AND DISCUSSION

To evaluate the accuracy and performance of par-gem5, we
ran a set of benchmarks using the multicore system
configuration shown in Table I. The assignment of simulation
objects to event queues was done following the strategy
explained in Section III-B. As a host system, we used an
AMD Ryzen 3990x (64 cores, 128 threads) with 128GiB of
3200MHz DDR4-DRAM running Ubuntu Linux 20.04.

A. Speedup and Accuracy of Bare-Metal Bubble Sort

To perform an initial examination of our parallel simulation
approach, we created a simple multi-core bare-metal bubble
sort benchmark. It comprises N threads, with the number of
available CPU cores N , whereby each thread independently
sorts its own array of integers. We designed this benchmark
to attain a near best-case simulation throughput, meaning that
thread synchronizations and accesses to shared memory are
reduced to a minimum.

This simple program was run multiple times, changing the
number of simulated cores and the simulation quantum. The
throughput in MIPS achieved in this experiment is shown in
Fig. 5. As it can be seen, the accumulated throughput grows
with the number of simulated cores in parallel mode, while it
stagnates in the regular single-threaded simulation. A
maximum throughput of 22.1 MIPS is attained with the
128-cores configuration, representing a speedup factor of
24.7×. The achievable speedup increases with the size of the
quantum and saturates at a certain point between 10µs and
1000µs. This observation is consistent with other publications
[15], [16] and can be attributed to the lower number of
synchronizations and better load balancing.

Due to the possible causality errors of our approach, the
accuracy of the simulation must be evaluated as well. Fig. 6
shows a comparison of the simulated time for the individual
settings. It can be seen that the inaccuracy grows with
increasing quantum and number of cores. Also shown in
Fig. 6 are the results of the temporal error estimation. A large
discrepancy between measured value and estimated value
tsim,est indicates a larger inaccuracy of the simulation. Any
greater inaccuracy is precisely detected by the temporal
estimation (see 64 cores with 1000µs quantum).

B. Speedup and Accuracy of NAS Parallel Benchmark

To evaluate par-gem5 with industry-standard multi-core
software workloads, we ran the NAS Parallel Benchmarks

Fig. 6. Accuracy of simulated seconds when executing bare-metal bubble sort
with par-gem5 using various quantum sizes.

(NPB) [1] on Ubuntu Linux 14.04. Specifically, we ran the
original eight benchmarks specified in NPB 1 (IS, EP, CG,
MG, FT, BT, SP, LU). We used the OpenMP implementation
from NPB version 3.4.2 and the Wide (W) data size
configuration. While the different test programs of the NPB
are all designed for multi-core platforms, they do not scale
homogeneously, as they vary greatly in terms of memory
access patterns, type of operation, and frequency of
synchronization points. A detailed analysis of the scalability
of each benchmark is presented in [21].

For each of the benchmarks, we conduct the same
experiment as described in the previous section, incrementing
the number of simulated cores. In this case, we fix the
quantum to 1µs due to the length of the simulations. With the
default single-thread mode, a throughput between 0.57 and
0.96 MIPS is recorded, while in parallel mode, this value
reaches up to 7.37 MIPS. We compute the speedup factor for
each test and present the results in Fig. 7. A maximum
speedup of 12.13× is observed for the EP benchmark in the
64-core configuration. In addition to possible constraints from
the host platform hardware, the potential speedup of our
parallelization approach is also affected by the simulated
application. Software workloads with a high parallelization
potential and a low core-to-core communication achieve the
best throughput in our simulator. This is the case of EP and
BT, which show significant speedups when running both
natively [21] and on par-gem5. Nevertheless, it can be
concluded that all benchmarks in all configurations benefited
from parallelization, consistently achieving speedups greater
than 1. Each NPB test program prints a report, including
several values, such as the total execution time and the
measured performance of the system. It can be regarded as a
macro statistic that sums up all performance influencing
micro parameters, like cache hit rate or memory bandwidth.
The deviation of the benchmark report between sequential
and parallel simulation is always below 1.53%.

Besides the aforementioned macro statistics, other statistics,
e.g., on the performance of the storage system, may also be of

TABLE I
CONFIGURATION OF THE TARGET SYSTEM.

CPU ARM64, AtomicSimpleCPU @ 2GHz
cores {1, 2, 4, 8, 16, 32, 64, 128}
Caches 64kiB L1-D, 32kiB L1-I, 2MiB L2 shared
Main Memory DDR3 RAM @ 1600MHz
Periph. Sub-system Real View Virtual Express V1
OS {Bare-metal, Ubuntu 14.04}

DOI: 10.23919/DATE56975.2023.10137178
PREPRINT - ©2023 IEEE - accepted at 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Fig. 7. Speedup attained with par-gem5 for each NPB test program using a
1µs quantum. The black baseline represents a speedup of 1.

interest. Table II compares the L1 cache miss rates for regular
gem5 and par-gem5 when simulating a 4-core system. Here,
the inaccuracy of the parallel simulation never exceeds 5.7%.
Also other parameters, such as the main memory bandwidth or
L2-cache hit rate, exhibit accuracies of > 99%. The accuracy
of the temporal error estimation is exemplarily shown for the
IS benchmark in Fig. 8. Here, larger inaccuracies could reliably
be detected (see 4 and 16 cores for 100µs quantum) as well.

In addition to pure performance measurement, the NPB
suite checks the results for correctness. There were no
irregularities in any of the benchmarks, which underpins the
functional correctness of par-gem5.

C. Other Benchmarks

In addition to the aforementioned benchmarks, experiments
with other benchmarks like PARSEC, SPEC2017, and
STREAM were conducted. Again, a similar picture emerges:
arithmetic-intensive applications achieve high speedups (18×,
PARSEC blackscholes @ 128 cores), while benchmarks with
a high load on shared resources, such as STREAM, show low
to no speedups.

V. CONCLUSION & OUTLOOK

In this paper, we showed how gem5 can be parallelized
using an synchronous, conservative PDES. Our work achieves
a 24.7× speedup for a best-case synthetic benchmark, while
retaining a > 99% accuracy for most simulation statistics. For
the widely used NAS Parallel Benchmark collection, a
maximum speedup of 12× has been observed when
simulating a 64-core ARM MPSoC on a 64-core/128-threads
host machine.

In our implementation, events will be postponed up to a
quantum length in the worst case if they impair causality.
However, the functionality of the ARM MPSoC and the OS
are not affected for relevant quanta. Yet an influence on the
accuracy of various simulation parameters can be observed.

Finding a quantum that allows high accuracy with high
speedup is one of the main challenges. While a large
quantum allows high speedups, a small quantum yields better

TABLE II
4-CORE 1µS QUANTUM SIMULATION OF NPB IS.

dcache miss rate icache miss rate
CPU 1µs reg error 1µs reg error

0 0.040828 0.042419 3.8% 0.000506 0.000497 1.7%
1 0.040065 0.040325 0.6% 0.001457 0.001445 0.8%
2 0.040093 0.042527 5.7% 0.000288 0.000278 3.6%
3 0.040960 0.040621 0.8% 0.000460 0.000446 3.1%

of sim.cores

Fig. 8. Accuracy of simulated seconds when executing NPB IS with par-gem5
using various quantum size.

accuracy in terms of simulation statistics. To find an optimal
quantum without time-consuming reference simulations, we
developed a temporal error estimation, which reliably detects
inaccurate simulations in executed benchmarks.

One of our future goals is to extend our work to gem5’s
timing mode. Contrary to the atomic, the timing mode uses
multiple events to model a transaction, complicating the process
of making gem5-internal models thread-safe. Nevertheless, the
same PDES as presented here can be used for the timing mode.

REFERENCES

[1] “NAS Parallel Benchmarks,” https://www.nas.nasa.gov/software/npb.
html, accessed: 2023-01-23.

[2] “Passmark Single Thread Performance,” https://www.cpubenchmark.net/
singleThread.html, accessed: 2023-01-23.

[3] M. Alian et al., “pd-gem5: Simulation Infrastructure for Parallel/
Distributed Computer Systems,” IEEE Comput. Archit. Letters, 2016.

[4] R. Bagrodia, “Language support for parallel discrete-event simulations,”
in Proceedings of Winter Simulation Conference, 1994.

[5] N. Binkert et al., “The Gem5 Simulator,” SIGARCH Comput. Archit.
News, 2011.

[6] G. Busnot et al., “Standard-compliant Parallel SystemC simulation of
Loosely-Timed Transaction Level Models,” in ASP-DAC, 2020.

[7] K. Chandy et al., “Distributed Simulation: A Case Study in Design and
Verification of Distributed Programs,” IEEE Transactions on Software
Engineering, 1979.

[8] B. Chopard et al., “A Conservative Approach to SystemC Parallelization,”
in Computational Science – ICCS, 2006.

[9] M.-K. Chung et al., “SimParallel: A high performance parallel SystemC
simulator using hierarchical multi-threading,” in ISCAS, 2014.

[10] R. Dömer et al., “Parallel discrete event simulation of Transaction Level
Models,” in ASP-DAC, 2012.

[11] R. Fujimoto, “Parallel Discrete Event Simulation,” Commun. ACM, 1990.
[12] R. Jagtap et al., “Exploring system performance using elastic traces: Fast,

accurate and portable,” in SAMOS, 2016.
[13] D. R. Jefferson, “Virtual Time,” ACM Trans. Program. Lang. Syst., 1985.
[14] M. Jung et al., “Speculative Temporal Decoupling Using fork(),” in

DATE, 2019.
[15] L. Jünger et al., “Optimizing Temporal Decoupling using Event

Relevance,” in ASP-DAC, 2021.
[16] A. Mohammad et al., “dist-gem5: Distributed simulation of computer

clusters,” in IEEE ISPASS, 2017.
[17] E. Perelman et al., “Using SimPoint for Accurate and Efficient

Simulation,” SIGMETRICS Perform. Eval. Rev., vol. 31, no. 1, 2003.
[18] A. Qumranet et al., “KVM: The Linux virtual machine monitor,”

Proceedings Linux Symposium, vol. 15, 01 2007.
[19] D. Sanchez et al., “ZSim: Fast and Accurate Microarchitectural

Simulation of Thousand-Core Systems,” SIGARCH Comput. Archit.
News, 2013.

[20] C. Schumacher et al., “parSC: Synchronous parallel SystemC simulation
on multi-core host architectures,” in CODES+ISSS, 2010.

[21] S. Seo et al., “Performance characterization of the NAS Parallel
Benchmarks in OpenCL,” in IISWC, 2011.

[22] J. Wang et al., “Manifold: A parallel simulation framework for multicore
systems,” in IEEE ISPASS, 2014.

[23] J. H. Weinstock et al., “SystemC-link: Parallel SystemC simulation using
time-decoupled segments,” in DATE, 2016.

https://www.nas.nasa.gov/software/npb.html
https://www.nas.nasa.gov/software/npb.html
https://www.cpubenchmark.net/singleThread.html
https://www.cpubenchmark.net/singleThread.html

	Introduction
	Background
	gem5's Discrete Event Simulation
	Parallel Simulation in FSSs
	Timing Mode vs. Atomic Mode

	Parallelizing gem5
	Implementation of the PDES
	Assignment of Objects to Event Queues
	Thread-Safe Memory System
	Temporal Error Estimation

	Results and Discussion
	Speedup and Accuracy of Bare-Metal Bubble Sort
	Speedup and Accuracy of NAS Parallel Benchmark
	Other Benchmarks

	Conclusion & Outlook
	References

