
DOI: TODO
PREPRINT - ©2024 IEEE - 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)

The Optimal Quantum of Temporal Decoupling
∗Niko Zurstraßen , ∗Ruben Brandhofer , ∗José Cubero-Cascante ,

∗Nils Bosbach , †Lukas Jünger , ∗Rainer Leupers
∗RWTH Aachen University, Institute for Communication Technologies and Embedded Systems

†MachineWare GmbH, Aachen, Germany

Abstract—Virtual Platforms (VPs) and Full System Simulators
(FSSs) are among the fundamental tools of modern Multipro-
cessor System on A Chip (MPSoC) development. In the last
two decades, the execution speed of these simulations did not
grow at the same rate as the complexity of the systems to be
simulated, creating a need for faster simulation techniques. A
popular approach is temporal decoupling (TD), in which parts
of the simulation are not synchronized with the rest of the
system for a time called quantum. A high quantum is beneficial
for simulation performance due to fewer synchronization/context
switches. Yet, it also increases the probability of causality errors,
leading to inaccuracies. Thus, most users of TD simulations face
the question: Which quantum offers the optimal compromise
between accuracy and performance? In practice and literature,
the quantum is usually chosen based on empirical knowledge.
This approach can achieve adequate performance/accuracy, but it
lacks proper reasoning. In this work, we address this shortcoming
by providing analytical estimations and deeper insights into the
effects of Temporal Decoupling (TD). Additionally, we verify the
proposed models using TD simulations in SystemC and gem5.

Index Terms—Temporal Decoupling, SystemC, gem5, Full-
System Simulation, Quantum

I. INTRODUCTION

Virtual twins of compute systems, so-called Virtual Plat-
forms (VPs) or Full System Simulators (FSSs), are versatile
tools used in the state-of-the-art development of hardware,
software, and their co-design. Following the trend of Moore’s
Law, the complexity of compute systems is growing exponen-
tially, leading to increasingly complex VPs. However, since
the execution speed of the often single-threaded VPs has
hardly benefited from new processor generations in the last
two decades, innovative methods are needed to close this gap
of complexity and simulation performance.

An established method to accelerate simulations is TD. With
TD, simulation processes do not synchronize with the simula-
tion kernel for up to t∆q (the so-called quantum). This leads
to a fewer synchronizations/context switches, which in turn
increases the simulator’s performance. Moreover, the relaxed
constraints on chronological event ordering are a key enabler
for parallel simulations, allowing for even higher speedups.
However, the relaxed constraints can lead to a chronologically
incorrect execution order of events. This negatively impacts the
simulation’s accuracy, or in the worst case, flaws the function-
ality of the simulated system. Therefore, small quanta increase
the simulation’s accuracy, while maximum performance is
attained by large quanta. Since simulations are supposed to be
fast and accurate, one faces the dilemma of finding a quantum
that yields a bearable inaccuracy with significant speedups. In

P1 P1CS CS CSP2 P2 CS

CS

P1 CS CS

P1 P2P1 CS P2P1 P2

Host Time

2

3 P1 P1P1
BAR BAR

P1P1 P1

P2 P2 P2 P2 P2 P2

1 P2

Fig. 1. Depicting the principle of temporal decoupling.

many works, the optimal quantum is determined by empirical
observations and is not further elaborated:

J. Engblom [11]: ”Time quantum lengths of 10k to 1M
cycles are needed to maximize VP performance. Most of the
time, software functionality and correctness are unaffected by
TD, and the default should be to use long time quanta.”

Ryckbosch et al. [21]: ”We set the simulation window to
10ms and the simulation quantum to 100ms in all of our
experiments. We experimentally evaluated different values for
the simulation window and quantum, and we found the above
values to be effective.”

In this work, we address this shortcoming by providing
analytical models for the performance estimation of TD sim-
ulations. We show that speedup and accuracy can be precisely
determined with simple formulas. However, the gist of our
analytical model is not its quantitative assessment, but its
statement about how the quantum is related to the law of
diminishing returns. This should guide the expectations of VP
users into the right direction, and help to understand why a
larger quantum does not necessarily equal higher performance.

II. BACKGROUND

A. Temporal Decoupling (TD)

TD allows individual simulation processes to advance in
their local time by a simulation time t∆q from the rest of the
system. This principle is illustrated in Fig. 1 with Case
showing the execution of a sequential simulation without TD.
The depicted system comprises two processes (P1, P2) that
execute events alternately. For example, this could be a dual-
core system where each event corresponds to the execution
of an instruction with a constant time, e.g. 1ns. To ensure
correct chronological execution, the simulation kernel has to
switch processes after each instruction (Case). TD reduces
the number of context switches by allowing each simulation
process to run ahead of global time by up to a quantum t∆q

(Case). Still assuming the dual-core example with 1 GHz
clock speed, a quantum of t∆q = 3ns would correspond to
an uninterrupted execution of 3 instructions. This results in 2
context switches instead of 5, reducing the simulation time by
t∆S .

https://orcid.org/0000-0003-3434-2271
https://orcid.org/0000-0002-8881-3457
https://orcid.org/0000-0001-9575-0856
https://orcid.org/0000-0002-2284-949X
https://orcid.org/0000-0001-9149-1690
https://orcid.org/0000-0002-6735-3033

DOI: TODO
PREPRINT - ©2024 IEEE - 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)

TD can also be used to enable parallel simulations, as
shown in Case . Here, each process runs in its own thread
with its own local time and must synchronize with the other
threads at a barrier every t∆q . Generally, such a method is also
called Parallel Discrete Event Simulation (PDES), which is
often subdivided into conservative and optimistic approaches.
Optimistic PDES rectifies causality errors through rollbacks,
while conservative PDES prevents them outright. Since the
presented approach allows causality errors, it does not fall
into either category.

In both sequential and parallel cases, TD can lead to an
incorrect chronological execution order. However, compute
systems are remarkably resilient to causality errors. Whether a
CPU is a few cycles ahead or if a timer interrupt occurs a few
microseconds too late, is irrelevant to the functionality of most
systems. Thus, often only the timing accuracy of the target
system is minimally affected. Nevertheless, for large quanta,
i.g. in the order of milliseconds or greater, functionality can
be affected. To counteract these negative effects, the quantum
can also be terminated early in sequential TD simulations.
For example, if a CPU executes a wait-for-interrupt (WFI)
instruction, it is foreseeable that the CPU will not perform
any meaningful task until the quantum ends, as the expected
interrupt will originate from another simulation thread. Hence,
the current quantum can be terminated early.

III. RELATED WORK

The principles of temporal decoupling (TD) were first
introduced in 1969 by Fuji et al. [13], who call their method
slice-based, but already introduce the term quantum. Today’s
prevalent term temporal decoupling was coined nearly 40
years later by the release of SystemC TLM-2.0 standard [5],
[6] in 2008. Even though TD is of practical relevance, the
question of the optimal quantum is still a relatively uncharted
field of research.

There are several works tackling the inaccuracy of TD. For
example, Jung et al. propose speculative temporal decoupling
that allows for a completely error-free simulation by re-
simulating erroneous sections with tighter synchronization. A
similar approach is used by [10], [15]. Glaser et al. [14] present
a control-theory-based approach called predictive temporal
decoupling. In their work, a Wiener filter is used to predict
events and dynamically adjust the length of the quantum to
minimize inaccuracy. In order to mitigate the diminishing
performance of dynamic TD, Jünger et al. [16] show how the
relation between events can be analyzed to allow for greater
quantum sizes without decreasing the simulation’s accuracy.
In the context of parallel TD simulation, a popular approach
is to set the quantum to a communication channel’s minimum
delay [9], [19], [22]. This allows for simulations completely
free of errors, but drastically limits the use-cases.

To the best of our knowledge, the only works combining
analytical models and TD simulation were published by Falsafi
et al. [12] and Over et al. [20]. Falsafi et al. present an
analytical performance model for the Wisconsin Wind Tun-
nel Simulator to determine the financial cost-effectiveness of

parallel simulations. Although the work by Falsafi et al. builds
on a similar foundation as ours, it leaves the question of the
optimal quantum untouched. In a similar fashion, Over et al.
[20] employ analytical models to compare two parallelization
methods. But again, the model is rather a byproduct, and the
question for the optimal quantum remains unanswered.

IV. METHODS

A. Analytical Speedup Models
In this section, we develop mathematical models to predict

simulation speed and accuracy as a dependency of the quan-
tum. Since the principle of parallel TD simulations differs from
their sequential counterpart, two separate analytical models for
the performance estimation are introduced.

1) Temporally-Decoupled Parallel Simulation: The first
model describes the speedup of a TD parallel simulation.
As explained in Section II and shown in Fig. 1 Case ,
this kind of simulation leverages the host system’s multi-
threading capability by executing parts of the simulation in
parallel. For example, with a simulated multi-core system,
each target CPU can be executed in its own thread. Since
this is a common use case, such systems will be assumed in
the following. Furthermore, assuming the system’s simulation
and its workload are perfectly parallelizable, and there are
no synchronization barriers, the following formula for the
speedup S holds valid:

S(N) = T/(T/N) = N (1)

With T being the host time required for a sequential simulation
and N being the number of threads. As seen in Equation 1, the
speedup grows linearly with the number of simulation threads.
For most parallel applications, a speedup of N represents
an upper estimate, as there is additional overhead due to
the synchronization of threads. In a synchronous parallel
simulation, this overhead is imposed by periodic barrier events.
We model this by adding a relative workload Ob(t∆q, N),
which depends on the length of the quantum t∆q and the
number of threads N :

S(N, t∆q) = (1/N +Ob(t∆q, N)/N)
−1 (2)

Since the overhead is inversely proportional to the quantum
(Ob(t∆q, N) = O′

b(N)/t∆q), the formula can be refined to:

S(N, t∆q) = (1/N +O′
b(N)/(N · t∆q))

−1 (3)

On modern operating systems, we observed that the timing
overhead imposed by barriers grows linearly with the number
of threads. This was found to be independent of the operating
system, hardware, or barrier type. Consequently, O′

b(N) =
O′′

b ·N , which leads to:

S(N, t∆q) = (1/N +O′′
b /t∆q)

−1 (4)

Ultimately, the factor O′′
b remains, representing a measure for

the overhead of a synchronization independent of the number
of cores. By rearranging Equation 4, O′′

b can be obtained as:

O′′
b = t∆q ·

N − S(N, t∆q)

S(N, t∆q) ·N
= t∆q ·

tN (t∆q)− tseq/N

tseq
(5)

DOI: TODO
PREPRINT - ©2024 IEEE - 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)

P1 P1CS CS CSP2 P2

P1 P1P2 P2

Host Time

Fig. 2. Example timings for a sequential temporally-decoupled simulation.

With tN (t∆q) being the host execution time of a parallel
simulation using N cores and a quantum of t∆q . The time
for the sequential reference is given by tseq . Hence, two sim-
ulation runs are required to estimate O′′

b . Since the parameter
O′′

b establishes a link between workload and synchronization,
it must be determined for each workload individually. In
practice, fluctuations in O′′

b are so small that sufficiently
accurate statements can be made with just one measurement.
With par-gem5, for example, all measurements for O′′

b were in
the range of 2-6ns. The obtained formula can be further refined
by accounting for sequential parts of the simulation. For
example, there could be a global state in the simulation, which
must be protected by serial access. But also the parallelism of
the executed target workload affects the speedup. A simulated
single-core Dhrystone benchmark will not benefit from a
parallel simulation, as the workload is inherently sequential. To
also model the impact of parallelism, we extended the formula
by Amdahl’s Law [7] to:

S =

(
p

N
+ 1− p+

O′′
b

t∆q

)−1

(6)

Amdahl’s Law introduces a factor p ∈ [0, 1] that indicates
to what extent the workload is parallelizable. Since p is an
unknown variable, it must be determined, for example, by
using a system of linear equations derived from Equation 4.
In the following, we use the least error squares method to
determine the parameters O′′

b and p.
2) Temporally-Decoupled Sequential Simulation: In this

subsection, we present an analytical model for TD sequential
simulations as implemented in the SystemC standard. With
sequential TD, the speedup is attained by reducing the number
of the simulator’s context switches. Hence, for a perfect
simulation without any context switches, the ideal time (Tideal)
is given by the sum of the time of all simulation segments
Ti (see Fig. 2): Tideal =

∑K
i=1 Ti. Practically, the context

switches between the individual simulation segments lead to
a relative overhead Oc:

Treal = Tideal · (1 +Oc) (7)

Similar to the parallel simulation, this overhead is inversely
proportional to the chosen quantum. Consequently:

Treal = Tideal · (1 +O′
c/t∆q) (8)

This also assumes the chosen quantum is larger than the
average event distance. For most cases in real-world VPs, this
assumption holds valid. The factor O′

c can be determined by
running two reference simulations for a given VP:

Treal(t∆q1)

Treal(t∆q2)
=

1 + O′

t∆q1

1 + O′

t∆q2

⇒ O′
c =

T (t∆q1)− T (t∆q2)
T (t∆q2

)

t∆q1
− T (t∆q1

)

t∆q2

(9)

Target Time

sequential
unidirectional

sequential
bidirectional

parallel

P1

P2

P1

P2

P1

P2

P1

P2

1 1

1

2

P1

P2

P1

P2
schedule

 postpone

2

2

1

2 3

4

1

2

3

4

Fig. 3. Types of timing errors in TD simulations.

To accurately determine the factor O′
c, we recommend

choosing low quanta, for which the context switching time
is a significant fraction of the total simulation time. Alterna-
tively, the factor O′

c can be determined by multiple reference
simulations and curve fitting. Ultimately, the speedup can be
derived as:

S(t∆q) =
Tideal

Treal
=

t∆q

t∆q +O′
c

(10)

The formula always yields values smaller than 1, since we
assume that TD does not accelerate the simulation, but reduces
performance-degrading environmental effects.

B. Analytical Inaccuracy Models

Contrary to the clearly defined speedup, the term ”inac-
curacy” can be understood in various ways. First of all,
inaccuracy can be categorized into qualitative and quantitative
aspects. Qualitative inaccuracy includes all observations that
cannot be expressed as a metric and lead to changed simulation
semantics. E.g., if TD leads to a program’s crash, the effect
can be characterized as qualitative.

Quantitative inaccuracy, on the other hand, can be mean-
ingfully captured in numbers. For example, it can be the
inaccuracy of cache hit rates, interrupt timings, or simulation
time. In the following, we chose the target simulation time
as a representative measure of accuracy, as it is influenced by
other metrics and can be found in most simulators.

1) Quantitative Inaccuracy: Parallel Simulation: Ulti-
mately, any kind of inaccuracy for TD simulations is caused by
an incorrect execution order of events. In other words, from the
point of view of a process, events occur too early or too late.
This is exemplified in Fig. 3. In the case of a par-gem5, events
beyond thread boundaries are always postponed to the next
quantum boundary if the event time is prior to the next barrier.
Therefore, the simulation duration in target time is extended
if the event is on the critical path. To analytically determine
the length of extension, we first assume that most events are
scheduled without delay. This assumption is consistent with
our observations, as most events, such as cache snoops or
SEV instructions, are scheduled quasi-instantaneously. Only a
few events, like timer interrupts, are scheduled far into the
future. Additionally, we assume that cross-scheduled events
occur stochastically independent of each other and always lie
on the critical path. Under this assumption, the occurrence of
a first cross-scheduled event within a quantum can be modeled

DOI: TODO
PREPRINT - ©2024 IEEE - 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)

with the Poisson distribution, leading to an average extension
of the simulation of td per quantum:

td = t∆q − E(X|X ≤ t∆q)P (X < t∆q)

− t∆qP (X > t∆q)

= t∆q −
∫ t∆q

0

rte−rt dt−
∫ ∞

t∆q

rt∆qe
−rt dt

= t∆q − (1− e−rt∆q)/r

(11)

This results in the relative timing inaccuracy of:

I =
t∆q

t∆q − td
− 1 =

r · t∆q

1− e−rt∆q
− 1 ≈ r · t∆q (12)

With r being the rate of cross-scheduled events per time unit.
As seen from Equation 12, the relative timing inaccuracy
is described by a hockey stick curve. Initially, the relative
inaccuracy grows exponentially for small quanta and then
transitions to a linear growth r · t∆q , which also acts as an
upper bound. This is in stark contrast to the derived speedup
model. While the achievable speedup eventually saturates, the
inaccuracy continues to increase indefinitely. This underlines
why the choice of the optimal quantum is so essential.

2) Quantitative Inaccuracy: Sequential Simulation: While
errors in parallel simulations are primarily caused by the
postpone process, the situation for sequential TD simulation
is more complicated. Considering only unidirectional commu-
nication between two processes (P1, P2) as shown in Fig. 3,
two types of errors can occur. If process P2 is executed first
and sends a message to process P1 within the quantum, P1
will have received this message right at the beginning of its
quantum. Thus, the message will be received too early on
average by t∆q/2. On the other hand, if P1 is executed first,
the message will not reach this process until the next quantum.
Consequently, this message will be received t∆q/2 too late
on average. If both cases are considered equally probable,
and if the characteristics of the executed target software are
neglected, there will be no time deviations on average.

For a bidirectional communication the situation is different
(see Fig. 3). In the example shown, P2 wants to send a
message to process P1, which is answered by the latter. For
simplicity, we assume that the target time required for sending
and receiving a message is minimal compared to the length
of the quantum. Again different cases arise depending on the
execution sequences. However, for all cases the simulation
time is extended by either t∆q/2 or 3t∆q/2. Therefore, on
statistical average, the target simulation time for sequential
TD simulation is extended. Using a similar approach as for
parallel simulations, the inaccuracy can be approximated by
a linear term. Thus, it can be stated that in both the parallel
and sequential case, the relative timing inaccuracy depends
linearly on the quantum. Without specifying the linear factor
in particular, this yields the following equation for the timing
inaccuracy I:

I = α · t∆q (13)

The factor α can be determined by two reference simulations
or curve fitting.

V. RESULTS AND DISCUSSION

To substantiate the statements and accuracy of our model,
validations with reference simulations are a necessity. All
following simulations were executed on an AMD Ryzen 3990x
(64 physical cores/128 logical cores) host system.

A. Parallel TD

For the parallel TD simulations we conducted experiments
using a parallel fork of gem5 [8], called par-gem5 [23]. The
principles of par-gem5 follow the background and formulas
explained in Subsection II-A and Subsection IV-A2. As a
target, a {16,32,64}-core Simple-CPU ARM system clocked at
1 GHz with a multi-level cache hierarchy was simulated. Using
this setup, we executed a bare-metal bubble-sort application,
NPB IS.W [3], and STREAM [18]. All benchmarks were
executed with Ubuntu as the target’s operating system, while
the bubble-sort application ran bare metal. In addition, the
benchmarks are multi-core applications that distribute their
workload across all cores of the target system. We refrained
from running single-threaded benchmarks, since the execution
of sequential workloads in parallel TD simulations is not
associated with significant speedups. The results of our ex-
periments can be found in Fig. 4. It can be observed that both
speedup and accuracy follow the general trend of the analytical
model. The achievable speedups vary from 1 (STREAM) up
to 20× for the bare-metal bubble sort benchmark, which is
reflected in the respective parallelization factor. However, all
benchmarks share a factor O′′

b in the same order of magnitude,
which is why the speedups saturate around a quantum of
500ns.

The relative inaccuracy in simulation time shows a quasi-
linear growth, as predicted. Depending on the benchmark,
the slope of the inaccuracy line differs by a factor of more
than 20×. In contrast to the speedup, however, a significantly
larger scatter around the predicted value can be observed here
(see STREAM). For STREAM, we attribute the deviations to
the periodic behavior of benchmark-internal functions. Unlike
initially assumed, cross-scheduled events do not necessarily
follow a Poisson process, but show a periodic behavior.
Although the inaccuracy also increases linearly for these in the
arithmetic mean, particularly advantageous or disadvantageous
sweet spots can be hit with certain quanta.

B. Sequential TD

As a reference implementation for sequential TD simulation,
we used the open-source ARMv8 TLM-2.0-based [6] VP
avp64 [1] and a RISC-V VP based on MachineWare’s SIM-
V [17]. To allow comparison with par-gem5, the CPUs of
both VPs are clocked at 1 GHz. As benchmarks we chose
Dhrystone, NPB, STREAM, and an operating system boot. All
benchmarks were executed on a buildroot-configured Linux
system. The results in Fig. 4 show a similar trend of diminish-
ing speedup returns and linearly increasing inaccuracy. Com-
pared to gem5 the speedup begins to saturate at values greater
than 10µs. This can be attributed to the efficient dynamic
binary translation backend of the simulators and the relatively

DOI: TODO
PREPRINT - ©2024 IEEE - 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)

a) b)

d)

e) f)

c)

Fig. 4. Measurement vs. estimation for speedup (orange) and target time inaccuracy (green) using various benchmarks and platforms.

TD default
[0.000385] Mount-cache hash table entries: 32768 [...]
[0.000396] Mountpoint-cache hash table entries: [...]
[0.024140] ASID allocator initialised with 128 entries
[0.032140] Hierarchical SRCU implementation.
[0.048162] smp: Bringing up secondary CPUs ...
[0.080218] Detected PIPT-Icache on CPU1

[0.000385]
[0.000396]
[422.828066]
[3495.801687]
[845.656091]
[5877.941435]

Fig. 5. Linux boot timestamps of a TD and a default simulation in gem5.

huge overhead of context switches, which is also reflected in
the factor O′

c. For example, the Dhrystone benchmark attains
a value of O′

c = 393ns, which means the execution of 393
cycles takes just as long as one SystemC context switch. This
example shows why TD has become a staple of Electronic
System Level (ESL) simulations. Simulated with a quantum
of 10µs, Dhrystone needs about 10 minutes of host simulation
time. Without TD, the simulation would require more than
2 days. In contrast to the speedup, the inaccuracy behaves
unpredictably at first and only changes to a linear growth from
a quantum of 10µs. The CPU is particularly responsible for
low quanta, which can end its quantum earlier in sequential
TD (see Section II). Thus, an increasing quantum does not
necessarily lead to increasing inaccuracy, as can be seen in
the example of the SIM-V boot process (Fig. 4 f).

C. Qualitative Inaccuracy

During the execution of our experiments, not only quanti-
tative inaccuracy in the form of timing errors occurred, but
also qualitative inaccuracy could be observed. This subsection
discusses the observed deviations in detail as the effects were
not always obvious, yet significantly changed the meaning
of the simulation, In our simulations, we were always able
to attribute qualitative inaccuracy to either access from dif-
ferent local time domains or delay of communication. The
former error is prevalent for simulation objects, which require
simulation timestamps for their functionality. An example
of this is the gem5 implementation of the ARM virtual
count CNTVCT_EL0 register. When fetching the value of the
register, its current value is determined by the time difference
between the current and the last access. In TD simulations, the
last access may have a higher timestamp, resulting in a nega-
tive delta. This delta is stored in an unsigned integer, leading to
corrupted values. These values can be observed during a Linux
boot, where the timestamps of boot messages are determined
by the CNTVCT_EL0 register. If CNTVCT_EL0 is corrupted,
so are the printed timestamps (see Fig. 5). A similar error was
also observed by Engblom [11], who proposes a restriction to

DOI: TODO
PREPRINT - ©2024 IEEE - 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)

Fig. 6. Comparing normalized MIPS, speedup, and instructions for the NPB
IS benchmark running on the avp64 SystemC VP.

deltas greater than or equal to zero.
The second type of observed error arises from delayed

communication between simulation objects. In the case of
the multi-threaded NPB benchmark, we observed that the
synchronization of threads was delayed by TD. Moreover,
while threads wait for their synchronization, they dwell in a
spin loop, executing NOP instructions. For large quanta, this
leads to an interesting effect: The total number of instructions
executed increases, causing the speedup measured in host
execution time to decrease. However, the speedup of the
simulator measured in MIPS stagnates or even increases since
NOPs are easy to simulate. As shown in Fig. 6, first effects are
already visible at t∆q > 1ms. At t∆q > 100ms, more than
half of the time is spent in spin loops. We therefore advise to
not use MIPS as performance metric for TD simulations.

In addition to the effects on simulation performance,
throughput or functionality of peripherals can also be affected
by delayed communication. As an example, we executed the
iperf3 [2] benchmark in avp64 with the VP as a server
and the host system as a client. In our configuration, the
benchmark determines the maximum throughput of a TCP-
based connection between a server and a client. As shown in
Fig. 7, the throughput rapidly decreases from 2690 Mbit/s at
t∆q = 1s to 77 MBit/s at t∆q = 100s. This performance drop
can be explained by the implementation of the OpenCores
Ethernet device ETHOC [4] which is used in avp64. The
device uses one thread each for sending and receiving Ethernet
frames, and each of these threads is executed only once per
quantum. Thus, only one Ethernet frame can be received per
quantum, which limits the maximum achievable throughput.
Ultimately, this can affect the data rate to such an extent that
timeouts of the network driver watchdog occur.

VI. CONCLUSION

In this paper, we showed how analytical models can be
used to estimate the performance and accuracy of parallel
and sequential TD simulations. Rather than improving the
model’s accuracy by adding complexity, we tried to capture
the gist of TD in a few simple formulas. Nevertheless, the
model can estimate with sufficient accuracy, which we have
verified with case studies conducted with SystemC and par-
gem5. The general rule of thumb that with larger quanta
the speedup increases and the accuracy decreases could be
confirmed by our model and measurements. Yet, our model
allows to quantify this statement further. The speedup of the
simulation as a function of the quantum behaves similarly to
a saturating sigmoidal curve, while the simulation inaccuracy,
on the other hand, grows linearly and indefinitely. This means,

Fig. 7. Executing the iperf3 benchmark using the VP as the server and the
host system as a client. The throughput uses the simulation time as a reference.

the achievable speedup has an upper bound, and above a
certain point, increasing the quantum mainly deteriorates the
simulation’s accuracy. Ultimately, the optimal compromise
between performance and accuracy is still determined by the
user, however, our models are of substantial value because they
provide guide-rails to focus discussion and hone expectations
for this decision.

REFERENCES

[1] “ARMv8 Virtual Platform (AVP64),” https://github.com/aut0/avp64, ac-
cessed: 2022-01-09.

[2] “iperf3 benchmark,” https://software.es.net/iperf/, accessed: 2022-11-07.
[3] “NAS Parallel Benchmarks,” https://www.nas.nasa.gov/software/npb.

html, accessed: Accessed: 2022-01-08.
[4] “OpenCores Ethernet MAC 10/100 Mbps,” https://opencores.org/

projects/ethmac, accessed: 2022-11-07.
[5] “OSCI TLM-2.0 Language Reference Manual,” https://www.accellera.

org/images/downloads/standards/systemc/TLM 2 0 LRM.pdf,
accessed: 2022-08-10.

[6] “IEEE Standard for Standard SystemC Language Reference Manual,”
IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005), 2012.

[7] G. M. Amdahl, “Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities,” in Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, 1967.

[8] N. Binkert et al., “The Gem5 Simulator,” SIGARCH Comput. Archit.
News, 2011.

[9] D. Burger et al., “Accuracy vs. performance in parallel simulation of
interconnection networks,” in Proceedings of 9th International Parallel
Processing Symposium, 1995, pp. 22–31.

[10] G. Busnot et al., “Standard-compliant Parallel SystemC simulation of
Loosely-Timed Transaction Level Models,” in ASP-DAC, 2020.

[11] J. Engblom, “Temporal Decoupling-Are ‘Fast’and ‘Correct’Mutually
Exclusive?” in DVCon Europe, 2018.

[12] B. Falsafi et al., “Cost/Performance of a Parallel Computer Simulator,”
in Proceedings of the Eighth Workshop on Parallel and Distributed
Simulation, ser. PADS ’94, 1994.

[13] K. Fuchi et al., “A Program Simulator by Partial Interpretation,” in
Proceedings of the Second Symposium on Operating Systems Principles,
ser. SOSP ’69, 1969.

[14] G. Glaser et al., “Temporal decoupling with error-bounded predictive
quantum control,” in FDL, 2015.

[15] D. R. Jefferson, “Virtual Time,” ACM Trans. Program. Lang. Syst., 1985.
[16] L. Jünger et al., “Optimizing Temporal Decoupling using Event Rele-

vance,” in ASP-DAC, 2021.
[17] ——, “SIM-V: Fast, Parallel RISC-V Simulation for Rapid Software

Verification,” DVCON Europe, 2022.
[18] J. McCalpin, “Memory bandwidth and machine balance in high perfor-

mance computers,” IEEE Technical Committee on Computer Architec-
ture Newsletter, pp. 19–25, 12 1995.

[19] A. Mohammad et al., “dist-gem5: Distributed simulation of computer
clusters,” in IEEE ISPASS, 2017.

[20] A. Over et al., “A Comparison of Two Approaches to Parallel Simulation
of Multiprocessors,” Performance Analysis of Systems and Software,
IEEE International Symmposium on, vol. 0, pp. 12–22, 04 2007.

[21] F. Ryckbosch et al., “VSim: Simulating Multi-Server Setups at near
Native Hardware Speed,” ACM Trans. Archit. Code Optim., jan 2012.

[22] J. H. Weinstock et al., “SystemC-link: Parallel SystemC simulation using
time-decoupled segments,” in DATE, 2016.

[23] N. Zurstraßen et al., “par-gem5: Parallelizing gem5’s Atomic Mode,” to
appear in DATE, 2023.

https://github.com/aut0/avp64
https://software.es.net/iperf/
https://www.nas.nasa.gov/software/npb.html
https://www.nas.nasa.gov/software/npb.html
https://opencores.org/projects/ethmac
https://opencores.org/projects/ethmac
https://www.accellera.org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf
https://www.accellera.org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf

	Introduction
	Background
	Temporal Decoupling (TD)

	Related Work
	Methods
	Analytical Speedup Models
	Temporally-Decoupled Parallel Simulation
	Temporally-Decoupled Sequential Simulation

	Analytical Inaccuracy Models
	Quantitative Inaccuracy: Parallel Simulation
	Quantitative Inaccuracy: Sequential Simulation

	Results and Discussion
	Parallel TD
	Sequential TD
	Qualitative Inaccuracy

	Conclusion
	References

