
1. start gdb

// simply start gdb

gdb <program>

// use if your program has arguments

gdb --args <program> <args>

// use a file with gdb commands

gdb -x <gdb_file> <program>

// program is stopped if <what> is written to

watch <what>

// The following commands are similar to breakpoints:

info watchpoints

delete [n]

disable [n]

enable [n]

// break execution at <where>

// <where> can be a line number, a function, etc.

break <where> or b <where>

// break at line number 42 in current source file

break 42

// break at line number 42 in source file foobar.c

break foobar.c:42

// break when calling function doCalc

break doCalc

// show infos for all bps; optionally only for bp n

info breakpoints [n]

// delete all bps; optionally only bp n

delete [n]

// disable all bps; optionally only bp n

disable [n]

// there are also conditional breakpoints;

// break at function doCalc if x > 0

break doCalc if x>0

// opposite of disable

enable [n]

2. gdb started, pre-debug

2.1 breakpoints

2.1 watchpoints

// stopped if read

rwatch <what>

// stopped in both cases

awatch <what>

// also addresses can be watched with *

watch *<address>

3. while debugging

3.1 visualization

// for fancy views: gdb TUI (text-user-interface)

// show {assembly code, source code, regs}

layout {asm,src,regs}

// simply start the debugging

run or r

3.2 printing

// strings are usually cutoff after 200 chars

// use this to print unlimited chars

set print elements 0

// print the value of what

print <what>

3.2 stepping

// step to next instruction; go into function

step [n] or s [n]

// step to next instruction; don't go intro function

next [n] or n [n]

// step out of function

finish or fin

// continue execution

continue or c

// print all local variables

info locals

// print all function arguments

info args

// show both source and assembly code

layout split

// change window focus in tui mode

ctrl + x

// close all tui windows

tui disable

// similar to step but with machine instructions

stepi [n] or si [n]

// similar to next but with machine instructions

nexti [n] or ni [n]

4. end gdb

quit or q // end gdb

3.3 backtrace

// show current call stack; optionally with local vars

backtrace [full] or bt [full]

// select frame n

frame n

// and registers as well with $

watch $<register>

// directly start debugging (skips step 2)

gdb --ex=r <program>

// attach to process by pid

gdb --pid <pid>

// save breakpoints to file

save breakpoints <file>

// execute commands from <file>

source <file>

<term> use your brain to replace this term

popular stack overflow question

[] anything between the brackets is optionally

n replace by an integer number

ctrl hit key "ctrl"

3.4 manipulation

// set variable or address to value

set var {<variable>,<address>} = <value>

// directly returns from the function

return <expression>

created by chciken with

{a,b} choose either a or b

one-page gdb cheat sheet v1.0

