
DOI: 10.1109/ICCD58817.2023.00090
PREPRINT - ©2023 IEEE - accepted at 2023 IEEE 41st International Conference on Computer Design (ICCD)

Efficient RISC-V-on-x64 Floating Point Simulation
∗Niko Zurstraßen , ∗Nils Bosbach , ∗Jan Moritz Joseph ,

†Lukas Jünger , †Jan Henrik Weinstock , ∗Rainer Leupers

∗RWTH Aachen University, Institute for Communication Technologies and Embedded Systems
†MachineWare GmbH

Abstract—Fast simulation of Virtual Platforms (VPs) is a
cornerstone of modern hardware/software co-development. A
particular challenge, especially if target and host Instruction Set
Architecture (ISA) are different, is the simulation of Floating
Point (FP) instructions. Although FP arithmetic was standardized
in 1985 by IEEE 754, extensive revisions and lax definitions have
led to a variety of different implementations. Thus, the question
we seek to answer in this work is: How can FP instructions be
efficiently simulated, if the FP arithmetic provided by the host
ISA is semantically different?

In this paper, we first provide a comprehensive overview of
methods used in academia and open-source projects. Subse-
quently, we propose our own strategy for emulating RISC-V FP
instructions on an x64 host. Our idea is to leverage the host’s
FPU and handle corner cases in software. In contrast to other
works, we cover the full spectrum of arithmetic FP instructions
and present innovative approaches, especially for the computation
of division and square root. Moreover, we show how exception
flags and a non-default rounding mode can be handled efficiently.
Our approach achieves a 3× speedup in common FP benchmarks
compared to purely software-based solutions. When comparing
our method against more sophisticated methods, as for example
used in QEMU, we achieve a 50% performance gain for non-
default rounding modes.

Index Terms—RISC-V, x64, Virtual Platforms, Floating Point

I. INTRODUCTION

For several decades now, instructions for Floating Point
(FP) arithmetic can be found in most general purpose CPUs.
To counteract a jungle of different implementations, a first
standardization was formulated in 1985 with IEEE 754 [18].
This standard is followed to a large extent by most popular
ISAs like x64, ARM, or RISC-V. Surprisingly, FP instructions
on these ISAs yet show different semantics. Two revisions
of the IEEE 754 standard in 2008 and 2019, and a number
of other factors have led to significant disparities, especially
between older and newer ISAs, such as x64 and RISC-V.

For example, the maximum of an sNaN (signaling Not a
Number) and an arbitrary FP number (e.g. max(sNaN, 5.0))
yields sNaN on x64, qNaN on RISC-V F 2.0, and 5.0 on
RISC-V F 2.2. Despite different results, all implementation
adhere to IEEE 754.

The different implementation of seemingly identical instruc-
tions poses special challenges for simulation techniques such
as Dynamic Binary Translation (DBT). It is one of the fastest
simulation techniques for target systems executed on a host
with a different ISA. With DBT, instructions of the executed
code are translated from the target to the host ISA during
runtime. In many cases, instructions can be translated 1-to-

1, leading to a near-native execution speed. If this 1-to-1
translation is possible for FP instructions, the approach is
also referred to as hard float. As shown before, a hard float
implementation for RISC-V-on-x64 simulation is unfeasible
due to different instruction semantics. Additionally, a possible
hard float approach is complicated by further reasons, like a
lack of specific rounding modes or NaN boxing.

A solution used in popular open-source projects, such as
gem5 [7], or Spike [13], is so-called soft float. With soft float,
FP instructions are emulated using integer arithmetic, usually
as part of a library in a high-level programming language. This
provides full control over the implementation, but negatively
impacts the simulator’s performance.

In this paper, we propose a solution to the crippling
performance of soft float and the inflexibilities imposed by
hard float. The general idea of our method is to leverage
the host Floating Point Unit (FPU) whenever possible, and
handle corner cases in software. Compared to other works that
take a similar approach, our work covers the full spectrum of
arithmetic FP instructions and presents new methods for the
calculation of square root and division. In addition, we show
how our method can be used to simulate different rounding
modes. While the focus of our work is on RISC-V-on-x64
simulation, the presented methods can be applied to other
cases as well. To demonstrate the practical benefits of our
method, we integrated it into the RISC-V-on-x64 simulator
SIM-V [20]. Using standard floating point benchmarks, our
method achieves performance benefits of 3× compared to soft
float approaches. Compared against methods as used in state-
of-the-art emulators, like QEMU, our approach executes FP
benchmarks up to 44% faster for non-default rounding modes.
To summarize, our work contributes:

• New RISC-V-on-x64 FP simulation approaches for quick
calculation of rounding and exception flags.

• An extensive overview of methods used in open-source
projects and academia.

• A case-study and performance analysis of our approach.

II. BACKGROUND

In this section, we first introduce mathematical definitions
of FP arithmetic. This is followed by the details of FP in
the x64 and RISC-V ISA. The emphasis is on the differences
between the two architectures, since these represent the main
challenge in FP simulation. Finally, the section is concluded
with an explanation of methods for overcoming this challenge.

https://orcid.org/0000-0003-3434-2271
https://orcid.org/0000-0002-2284-949X
https://orcid.org/0000-0001-8669-1225
https://orcid.org/0000-0001-9149-1690
https://orcid.org/0009-0008-0902-7652
https://orcid.org/0000-0002-6735-3033

DOI: 10.1109/ICCD58817.2023.00090
PREPRINT - ©2023 IEEE - accepted at 2023 IEEE 41st International Conference on Computer Design (ICCD)

31 30-23
sign exponent

binary32

binary64

significand
22-0

63 62-52
sign exponent significand

22-0

Fig. 1. Bit representation of IEEE 754 binary32 and binary64.

A. Mathematical Background
When speaking of FP arithmetic, we implicitly assume the

most common format according to IEEE 754. In particular,
the base-2 formats binary32 and binary64 with 32-bit and 64-
bit precision, respectively. These are also known as single and
double precision. As shown in Fig. 1, the binary representation
of a FP number comprises a sign, a significand, and an
exponent. Mathematically, the value of an FP number is
calculated as:

f = (−1)sign · (1.sp−1sp−2...s1)2 · 2exponent−bias (1)

Since exponent is an unsigned value, an implicit bias is sub-
tracted to be able to represent negative exponents. Exponents
with all bits set to 1 or set to 0 are reserved for special values.
In case of all bits set to 1, the significand determines if the
number is either interpreted as NaN or infinity. If all bits
are 0 (exponent = 0), the implicit leading 1 is replaced by
a 0, and the numbers are referred to as subnormals. While
Equation 1 is often used to introduce the concept of IEEE FP
numbers, the p − 1 significand bits with an implicit leading
1 complicate mathematical handling. A representation more
suitable for mathematical proofs is:

f = M · 2e−p+1, e = exponent− bias (2)

Depending on the data type, the precision p, significand
M , and the exponent e are constrained by the values given
in Table I. Note that the p precision bits include the implicit
leading 1. For example, a binary32 value has a precision of
24 bits of which 23 bits are explicitly stored.

Whenever mathematical operations are performed on FP
numbers, rounding errors may occur. In literature and this
work, rounding is symbolized by the ◦ operator. E.g.,
◦RNE,32(a+ b) corresponds to a 32-bit addition under Round
Nearest, Ties to Even (RNE) rounding mode. In the following,
if no rounding mode is given, RNE shall be assumed. The
errors caused by rounding can be described by the standard
error model of FP arithmetic [17]. According to the model, the
error of many arithmetic operations (+,−, /, ·,√), including
underflows, can be represented as:

z = (a op b) · (1 + ϵ) + η = ◦(a op b)
ϵη = 0, |ϵ| ≤ u, η ≤ |2emin | · u, u = 2−p (3)

If no underflow occurs, η = 0 holds, otherwise ϵ = 0 holds,
meaning z is a subnormal number. The relative error ϵ is
bounded by the so-called unit roundoff error u.

TABLE I
CONSTRAINTS FOR BINARY32 AND BINARY64. WITH p,M, e ∈ Z.

data type exponent range precision bits significand range
binary32 −126 ≤ ef ≤ 127 pf = 24 |Mf | ≤ 224 − 1
binary64 −1022 ≤ ed ≤ 1023 pd = 53 |Md| ≤ 253 − 1

NV NXDZ OF UF

NVNXDAZ

01234
1

012345

7-531-8

31-16 612-714-1315
FMASKSRM

{RNE,RTZ,RDN,RUP}

{RNE,RTZ,RDN,RUP,RMM}
Reserved

Reserved

RISC-V: fcsr

x86: mxcsr

RM

OF = Overflow
RDN = Round down
RNE = Round to nearest, ties to even
RTZ = Round towards zero
RUP = Round up
RNM = Round to nearest, ties to magnitude
UF = Underflow

FTZ DZOF DNUF

DAZ = Denormal as zero
DN = Denormal
DZ = Divide by zero
FTZ = Flush to zero
NV = Invalid
NX = Inexact

1

2

2

Fig. 2. FP control/status registers of RISC-V (fcsr) and x64 SSE (mxcsr).

B. RISC-V Floating Point Arithmetic

In RISC-V, all functionalities beyond fundamental opera-
tions are defined by extensions. The extensions F and D are
considered the standard FP extensions, providing 32-bit and
64-bit FP arithmetic respectively. Both FP extensions adhere
to the IEEE 754 2019 standard [19]. Accordingly, there are 5
rounding modes and 5 FP exceptions, which are represented
in the fcsr register (see Fig. 2). Opposed to other architec-
tures, RISC-V does not trigger traps when encountering FP
exceptions. A special peculiarity, not mentioned in the IEEE
standard, is RISC-V’s hardware-assisted NaN boxing, which
saturates the upper bits if an N-bit FP value is written to
an M-bit FP register with M > N . For example, if a 32-
bit FP value resides in a 64-bit register, it is only considered
valid if the upper 32 bits are set to 1. This means, instructions
working solely on 32-bit FP values must check the upper bits
when reading the operands and set them when writing back
the result. Since the whole 64-bit value encodes to a negative
qNaN, there is no risk of creating valid values by accident. The
canonical qNaN created by instructions with invalid operands
adheres to the IEEE 754 standard and uses a positive sign. For
example, a 32-bit division by zero will result in 0x7fc00000
for 32-bit FP registers. The same 32-bit division for 64-bit FP
registers results in a NaN-boxed value of 0xffffffff7fc00000.

C. x64 Floating Point Arithmetic

The following description of the x64 FP arithmetic refers
to the SSE and AVX extensions. These were preceded by the
x87 extension from 1980, which is still supported by modern
x64 CPUs, but widely considered obsolete.

x64 FP instructions follow the IEEE 754 standard [18] from
1985. In addition to the aforementioned functional differences
of certain instructions, there are other important subtleties that
need to be considered. For example, x64 misses the RNM
rounding mode, which was introduced in later standards (see
Fig. 2). The five FP exceptions (invalid, underflow, overflow,
inexact, divide-by-zero) were already defined in the first stan-
dard matching RISC-V in this regard. Yet mapping the FP
exceptions from host to target turned out to be one of the most
difficult challenges, as shown in the next section. In addition
to the five standard FP exceptions, x64 also defines a denormal
flag for the detection of subnormal results. One further pecu-
liarity is x64’s support for treating subnormal numbers as 0
using the FTZ and DAZ flags. This allows to treat accuracy for
performance in underflow-prone applications [12]. In contrast

DOI: 10.1109/ICCD58817.2023.00090
PREPRINT - ©2023 IEEE - accepted at 2023 IEEE 41st International Conference on Computer Design (ICCD)

to RISC-V, the x64 ISA also allows to specify which FP
exceptions cause a trap. The corresponding masking bits are
selected in the FMASK field, as depicted in Fig. 2. Another
difference between RISC-V and x64 is the canonical qNaN
encoding. On x64 systems, the canonical qNaN uses a negative
sign, as opposed to the RISC-V positive sign. That means,
a 32-bit qNaN as a result of an invalid operation would be
encoded as 0xffc00000.

D. Simulation Methods

As already shown, the FP arithmetic of RISC-V and x64
differ in several aspects. This impedes the simulation per-
formance of RISC-V targets on x64 hosts, since instructions
cannot be translated in a 1-to-1 fashion. In particular, the
following challenges arise:

• Different instruction semantics.
• Different signs for canonical qNaN values.
• x64 missing RNM rounding mode.
• RISC-V NaN boxing.
• Mapping of FP exceptions.

To overcome these challenges, various methods have been
developed. In general, they can be categorized as hard float,
floppy float, or soft float.

Hard float refers to a simple 1-to-1 target-to-host instruction
mapping. This allows for near-native execution speeds, but
differences between host and target ISA might impose insur-
mountable hurdles. However, if bit-level equality of results is
not a concern, this approach can be used to trade accuracy for
performance. For example, instead of mapping a x64 qNaN to
a RISC-V qNaN, the value could be just taken as is. Since both
qNaNs are semantically the same, most applications are not
affected by different bit-level representations of NaN values.
Yet there are applications that expect certain NaN values in
order to function properly.

Soft float is a commonly used method to deal with the
accuracy flaws of hard float. Instead of using the host’s
FPU, FP instructions are simulated using integer arithmetic.
Usually, each instruction has a corresponding function call,
which is part of a software library written in a high-level
programming language, such as C. This provides full control
of rounding modes, exceptions, and instruction semantics.
However, simulating FP instructions using integer arithmetic
is associated with low performance. In our experiments, soft
float was up to 80× slower than hard float.

The floppy float approach combines the flexibility of soft
float with the performance of hard float. This is achieved
by executing the computational kernel of an instruction on
the host FPU and catch corner cases in software. A detailed
analysis in the context of other works is given in the next
section.

III. RELATED WORK

In the following, an extensive analysis of the simulators
rv8 [8], QEMU [4], gem5 [7], and Spike [13], is provided.
This is complemented by an analysis of academic works [10],
[15], [23], [25].

A. rv8

rv8 [8], [9] is an open-source, DBT-based, RISC-V emu-
lator for x64 hosts. Its approach for FP simulation can be
characterized as hard float with minor software-based checks.
With rv8, the RISC-V target exception flags and rounding
mode are mapped 1-to-1 to the x64 host. As explained in
Section II, RISC-V and x64 are equivalent with regards to their
exception flags. Thus, checking and setting the exceptions flags
is simply achieved by accessing the host’s mxcsr register. Yet
mapping the rounding modes poses a problem, as x64 is not
endowed with a mode for RNM. rv8 solves this problem by
incorrectly mapping RNM to RNE. This trades accuracy for
simplicity/performance and leads to rv8 not being conform
with the RISC-V standard. Other problems, such as NaN
boxing or semantically different instructions, are solved by
rectifications in software.

B. gem5, QEMU pre 4.0.0, Spike

The open-source projects gem5 [7], Spike [13], and
QEMU [4] pre-v4.0.0 use soft float libraries, with the latter
transitioning to floppy float since version 4.0.0. All simulators
use(d) the open-source library Berkley Softfloat by J. Hauser
[16] which is based on the IEEE 754 1985 standard [18].
Soft float libraries that implement the more recent IEEE 754
2008 standard include SoftFP by F. Bellard [5], and FLIP
by C.-P. Jeannerod et al. [6]. Besides generic solutions in
programming languages like C, there are also architecture-
optimized soft float libraries. For example, RVfplib [22] is an
optimized library for RISC-V systems that do not include the
F or D extension.

C. QEMU post-v4.0.0

As of version 4.0.0, there is an ongoing effort to speed up
the FP performance of QEMU by using the floppy float method
from Guo et al. [15]. The initial idea of Guo et al. was to
calculate the result of a FP instruction on the host FPU, while
the exception flags are emulated in software. This approach
showed a significant overhead of the calculation of the inexact
exception, leading to no speedup compared to soft float. To
avoid the high costs for the inexact calculation, a FP operation
is preceded by a quick check, whether the exception must be
calculated at all. Because with most ISAs, such as RISC-V or
x64, the inexact exception is sticky. I.e., if an instruction has
generated an inexact result, the inexact exception remains set,
even if subsequent instructions produce exact results. As most
applications do not clear the exception and tend to generate an
inexact result at some point, it can be assumed, that in most
cases the inexact exception is already set.

An example for the square root instruction in QEMU using
Guo’s method is shown in Code 1. The function starts with
a call to can_use_fpu. This corresponds to the aforemen-
tioned check of the inexact flag. Furthermore, the host FPU
can only be used if the host rounding mode corresponds to
the target’s rounding mode. It is assumed that the default C
rounding mode of RNE is used. Hence, a check of the target’s
rounding mode is sufficient. Since some target architectures

DOI: 10.1109/ICCD58817.2023.00090
PREPRINT - ©2023 IEEE - accepted at 2023 IEEE 41st International Conference on Computer Design (ICCD)

1 static inline bool can_use_fpu(const float_status *s) {
2 if (QEMU_NO_HARDFLOAT)
3 return false;
4
5 return likely(s->f_excep_flags & f_flag_inexact
6 && s->f_round_mode == f_round_near_even);
7 }
8
9 float32 float32_sqrt(float32 xa, float_status *s) {

10 if (unlikely(!can_use_fpu(s)))
11 goto soft;
12
13 if (unlikely(!is_zero_or_norm(xa) || is_neg(xa)))
14 goto soft;
15
16 return sqrtf(ua.h);
17 soft: return soft_f32_sqrt(ua.s, s);
18 }

Code 1. Code of QEMU’s square root instruction (fpu/softfloat.h).

like PowerPC do not have a sticky inexact exception, the
check can be skipped by defining QEMU_NO_HARDFLOAT.
To also avoid setting the underflow and invalid exception, a
second check is performed in Line 13. The idea of extending
Guo’s method by checking both underflow and invalid flags
was proposed by Cota et al. [10]. If all checks passed, the
hard float function sqrtf is called, resulting in a sqrtss
instruction for x64 hosts. In case the checks do not pass, the
corresponding soft float function is called.

Using the method of Guo et al., the performance of FP
instructions can be increased by a factor of more than 2×.
However, this speedup can only be achieved if the RNE mode
is used and if an inexact exception occurs at some point. To
tackle the latter issue for additions, Guo et al. developed a
quick inexact check which resembles the Fast2Sum algorithm
by T.J. Dekker [11].

D. You et al.
Picking up the idea of fast inexact checks from Guo et

al., You et al. [25] extended it by accounting for rounding
modes as well. This is achieved by utilizing the residual r
of the Fast2Sum algorithm by T.J. Dekker [11] (see Code 2).
According to Dekker, the result of a rounded addition can be
described by the sum of its exact value and a residual:

a+ b− r = s = ◦(a+ b)

r = ◦(b− ◦(s− a)) with |a| > |b|
(4)

As mathematically proven by Dekker, the residual r holds
the exact rounding error of the addition of the variables a
and b. Hence, if the residual r is not 0, the FP addition was
inexact. Additionally, the value of the residual also determines
the rounding direction of the preceding addition ◦(a+ b). For
r > 0, the result of the addition was rounded down; for r < 0,
the result was rounded up. This can be used, to adjust for
any given target rounding mode, as shown in Code 2 Line
7-9. While You et al. managed to develop fast inexact checks
and rounding adjustment for additions and conversions, other
instructions remain untouched.

E. Sarrazin et al.
During the implementation of an Kalray-1-on-x64 simu-

lator, the group of Sarrazin et al. [23] faced the problem

1 float c = a + b; // Result.
2 float x = fabs(a) > fabs(b) ? a : b;
3 float y = fabs(a) > fabs(b) ? b : a;
4 float r = y - (c - x); // Rounding error.
5 if (r != 0.f) {
6 inexact = true;
7 if (r > 0.f) {
8 c = nextup(c); // Next greater FP value.
9 overflow = is_inf(c) ? true : overflow;

10 }
11 }

Code 2. C++ code of the Fast2Sum algorithm using RUP rounding.

calculating Fused Multiply-Add (FMA) instructions without
hardware support. As a solution they combined exact 32-to-
64-bit multiplications with the 2Sum algorithm:

M = ◦64(a · b) S, T = 2Sum(M, ◦64(c))
r = ◦32(S) E = ||S − r||

with ◦32 (a) = a, ◦32(b) = b, ◦32(c) = c

(5)

Note that the result of the 2Sum algorithm is identical to
the Fast2Sum algorithm, which was presented in the previous
subsection. A detailed discussion about the differences and
performance implications is provided in Subsection IV-A. The
residual T determines if the addition of c and a ·b was inexact.
This can have an impact on the rounding if E is in the middle
of two 32-bit FP numbers (E = 2er−p). Hence, if E is equal
to 2er−p, S and T must be used to adapt r accordingly.

While the approach of Sarrazin et al. is about calculating
FMA by means of multiplcation and addition, the general idea
can be used to determine the inexactness and perform directed
rounding. This is shown in Subsection IV-A5.

One major disadvantage of the method by Sarrazin et al. is
the dependence on larger data types. If the residual of a 32-
bit FMA instruction is computed, at least 64-bit FP precision
is required. Or more precisely, the larger data type needs at
least 2p significand bits. Consequently, this algorithm does not
work for double precision values on x64 systems.

F. FPU Guards

In the previous subsections, we showed several approaches
of emulating a specific FP arithmetic. The focus of the floppy
float approaches [10], [15], [23], [25] was on a fast calculation
of the exception flags and the simulation of rounding modes.
At first glance, this may seem superfluous and too complicated
for RISC-V-x64 simulation. As already shown for rv8, at least
for the exception flags, the mxcsr registers of the host can
be used. Also for the rounding modes, 4 out of 5 modes can
be set using the mxcsr. Hence, a possible method for fast
simulation, which we call FPU guards, could look as follows:

1) Save host FPU state
2) Load target FPU state
3) Execute target FP instruction
4) Save target FPU state
5) Load host FPU state

In fact, this simple method was also considered in the works
of Guo et al. [15], You et al. [25], Sarrazin et al. [23], and Cota
et al. [10]. However, in three of the works, it was ultimately

DOI: 10.1109/ICCD58817.2023.00090
PREPRINT - ©2023 IEEE - accepted at 2023 IEEE 41st International Conference on Computer Design (ICCD)

discarded due to poor performance. According to Guo et
al. [15], the FPU guards are even outperformed by soft float
implementations. Also we could we could confirm the results
with our experiments. An investigation revealed that the poor
performance can be attributed to the extremely high-latency
x64 instructions to access the FP status register.

IV. METHODS

A. Quick Inexact/Rounding Calculations

The main contribution of our work is presented in this
section. Thereby, the focus is especially on fast calculation
of exception flags and simulation of rounding modes. By
introducing methods for addition/subtraction, multiplication,
division, square root, and FMA, we cover all relevant FP
instructions. Besides using mathematical means to check the
validity of our approach, all instructions were verified using
the RISC-V Architecture Test [14].

1) Fast Addition: As explained in Section III-D, the work
of You et. al [25] uses the Fast2Sum algorithm for the
calculation of the residual r. This requires two arithmetic
operations, but the operands must be sorted by absolute value.
Consequently, branching instructions might be needed, which
can lead to performance penalties. As an alternative without
sorted operands, O. Møller [21] proposed the 2Sum algorithm.
It does not require branching instructions, but involves more
arithmetic instructions (see Code 3). In our experiments, the
2Sum algorithm was about 10% faster than the Fast2Sum
algorithm when working on randomized data. If the input
data is predictable, thus favorable to the branch predictor, both
algorithms achieve the same performance.

1 float c = a + b; // Result.
2 float da = (c - b) - a;
3 float db = (c - a) - b;
4 float r = da + db; // Residual.

Code 3. C++ code of the 2Sum algorithm.

2) Fast 32-bit Multiplication: To enable fast calculation
of multiplications, we developed the UpMul algorithm (see
Code 4). Similar to addition, the value of the residual is
calculated, values are rounded, and exceptions are set. For
UpMul to work, the operands a and b must be available as
32-bit FP values. In a first step, these are upcasted to 64-bit
values and then multiplied. Since the number of significands
more than doubles from 32-bit FP to 64-bit FP, the result of
the multiplication can be represented exactly. If the exact value
is subtracted from the erroneous value, the residual remains
(see Equation 6).

cexact + r = c = ◦32(a · b)
r = ◦64(◦32(a · b)− ◦64(a · b))

(6)

The formula can be derived by first showing that the
multiplication of the 32-bit values as 64-bit values is exact.
Using Equation 2, the multiplication can be expressed as:

a · b = Ma ·Mb · 2ea+eb−2pf+2 = c = Mc · 2ec−pd+1 (7)

Thus, we can derive the ranges of Mc and ec:

|Mc| = |Ma ·Mb| ≤ (224 − 1)2 ≤ 248 − 1 ≤ 2pd − 1

|ec| = |ea + eb − 2pf + pd + 1| ≤ 260 ≤ |ed,min|
(8)

Since both Mc and ec fit into the range of a double-precision
value, the result of the multiplication is exact. Furthermore,
the 64-bit multiplication of two 32-bit values can never lead
to an underflow, which is why we do not consider this corner
case. From Equation 8 we can also see why 2p significand
bits are required to represent a multiplication exactly. Next the
exactness of the subtraction can be shown by using Sterbenz’
Lemma [24]. Since the values of ◦64(a ·b) and ◦32(a ·b) differ
by not more than a unit roundoff, their subtraction is exact.

A C++ implementation for the RUP rounding mode can be
found in Code 4. As shown in the code, an inexact calculation
has occurred if r ̸= 0 (Line 3). Subsequently, the result is
rectified in case the host hardware rounded it down (Line 5-
6). This could lead to an overflow, hence the result is checked
for infinity (Line 7). According to the RISC-V ISA, tininess
is detected after rounding, requiring an underflow check after
the rectification (Line 9).

1 float c = a * b;
2 double r = (double)c - (double)a * (double)b;
3 if (r != 0.) {
4 inexact = true;
5 if (r < 0.) {
6 c = nextup(c); // Next greater FP value.
7 overflow = is_inf(c) ? true : overflow;
8 }
9 underflow = (is_subnormal(c) || is_zero(c))

10 ? true : underflow;
11 }

Code 4. C++ code of the UpMul algorithm for a RUP case.

3) Fast 32-bit Division: For fast division, we developed a
new method called UpDiv (see Code 5), which was not seen
in any other work before. Similar to the UpMul algorithm,
both operands must be 32-bit FP values, and the goal is
to compute the residual r. However, in this case, the exact
determination of the residual of a division is overambitious,
as certain rational numbers cannot be represented with a finite
number of significand bits. Nevertheless, the exact value of
the residual is not crucial for our endeavor. Rather, we want
to know whether there was a rounding error, and if it is positive
or negative. In mathematical terms, an approximation of the
residual r̃ is sought, for which sgn(r̃) = sgn(r) is satisfied.
Such an approximation is obtained by:

cexact + r = c = ◦32(a/b)
r̃ = ◦64(◦64(◦32(a/b) · b)− a) · sgn(b)

(9)

The equation can be derived by using the standard model
of FP arithmetic extended for subnormals (see Equation 3).
According to the model, the error of the FP division, including
underflow and overflow, can be represented as follows:

a

b
· (1 + ϵ1) + η1 = ◦32(a/b) (10)

If the result of the division is upcasted to 64-bit and multiplied
by the value of b, which is also upcasted to 64-bit, the result

DOI: 10.1109/ICCD58817.2023.00090
PREPRINT - ©2023 IEEE - accepted at 2023 IEEE 41st International Conference on Computer Design (ICCD)

must be exact (see previous section). This allows to calculate
the approximation ã as follows:

ã = a+ aϵ1 + bη1 = ◦64(b · ◦32(a/b)) (11)

Subtracting a from ã yields Equation 12.

z = ◦64(◦64(b · ◦32(a/b))− a) = (aϵ1 + bη1)(1 + ϵ2)

z =

{
bη1(1 + ϵ2) subn.

aϵ1(1 + ϵ2) else

(12)

Although this addition can be inexact, which is described by
ϵ2, the result 0 can only be obtained if the preceding division
was exact (ϵ1 = η1 = 0). Otherwise, the sign of z is directly
determined by aϵ1 or bη1. Next, Equation 12 is rearranged to:

ϵ1 =
z

a · (1 + ϵ2)
η1 =

z

b · (1 + ϵ2)
(13)

Inserting Equation 13 into Equation 10 yields for both cases
the following residual:

r = z/(b · (1 + ϵ2)) (14)

Therefore, the residual can only be 0 if z is 0 as well. Likewise,
the sign of r is directly determined by z and b. Consequently,
we conclude sgn(r̃) = sgn(r).

1 float c = a / b;
2 double r = (double)c * (double)b - a;
3 r = signbit(b) ? -r : r;
4 if (r != 0.) {
5 inexact = true;
6 if (r < 0.) {
7 c = nextup(c); // Next greater FP value.
8 overflow = is_inf(c) ? true : overflow;
9 }

10 underflow = (is_subnormal(c) || is_zero(c))
11 ? true : underflow;
12 }

Code 5. C++ code of the UpDiv algorithm for a RUP case.

4) Fast Square Root: The calculation of a fast square root
and its residual follows the same principle as the UpMul and
the UpDiv algorithm. We exploit that multiplication is the
inverse operation of square root, and that multiplication with
larger data types is exact. The residual results according to
Equation 15.

bexact + r = b = ◦32(
√
a)

r̃ = ◦64(◦64(◦32(
√
a)2)− a)

(15)

The proof of the UpSqrt algorithm is equivalent to the proof
of the UpDiv algorithm. Again, an approximation r̃ for the
residual r with sgn(r) = sgn(r̃) is sought. Similar to the
UpDiv proof, we exploit exact multiplications by upcasting.
Moreover, the multiplication can be used as an inverse function
of the actual operation. The final result is the following
expression:

r =

√
r̃

1 + ϵ2
+ a−

√
a (16)

Since the sign of r is only dependent on r̃, sgn(r) = sgn(r̃)
holds.

5) Fast 32-bit Fused Multiply-Add: For fast FMA simula-
tion we repurposed and extended the method of Sarrazin et
al. [23]. The idea is to first calculate the exact multiplication
of a and b using a larger data type. Subsequently, the residual
of the summation of a · b and c is calculated using the 2Sum
algorithm. But even if this summation was exact (r1 = 0),
the final result might not be representable as 32-bit FP value.
Hence, another residual r2 is calculated to determine the 64-bit
to 32-bit rounding error. Note that r2 is exact due to Sterbenz’
Lemma [24].

dexact + r = d = ◦32(a · b+ c)

r1 = 2Sum(◦64(a · b), c)
r2 = ◦64(◦64(◦64(a · b) + c)− d)

(17)

Finally, an approximation of the rounding error r̃ can be
calculated, as shown in Equation 18.

r̃ = r1 + r2 (18)

Although the addition of r1 and r2 is not exact per se, it
satisfies sgn(r̃) = sgn(r).

6) Fast 64-bit Operations: Our previous upcast algorithms
UpMul, UpDiv, UpSqrt, and also the FMA algorithm accord-
ing to Sarrazin et al. [23], are all based on the availability of
a larger data type that can perform multiplications exactly. As
mentioned earlier, these algorithms reach their limitations for
64-bit values on x64 systems. To circumvent these limitations,
the fused-multiply-add (FMA) of the x64 ISA can be used.
This instruction is defined in the FMA3/FMA4 instruction
set extensions and is part of all modern x64 processors. For
example, using FMA, the residual of the UpMul algorithm can
be calculated as follows:

r′ = ◦64(◦64(a · b)− a · b) = ◦64(c− cexact) (19)

However, the rounding step at the end of each FMA instruc-
tion poses a problem. Although an FMA instruction calculates
all intermediate results with infinite precision, the result is
eventually rounded. In the example shown, it is possible that
r′ is not representable with a 64-bit precision. One could
therefore wrongly assume a value of 0, although the value
is actually different from 0. Hence, r′ = r does not hold in
all cases.

Consequently, bounds must be determined for which r′ is
no longer representable. Since r′ is the direct result of the
subtraction of c and c′, we have to determine the smallest
distance between these numbers, excluding 0. This distance
is |d| ≥ 2ec−2pd . The number of double significand bits 2pd
follows from the exact intermediate results of the FMA instruc-
tion. As explained previously, 2p significand bits are needed
for the exact representation of a p-bit multiplication. In order
to represent r′ as a 64-bit FP value, ec−2pd ≥ ed,min−pd+1
must hold. A simple rearrangement leads to the following
inequality:

ec ≥ ed,min + pd + 1 = −1022 + 53 + 1 = −968 (20)

If |c| is less than 2−968, our method cannot be used, and the
instruction has to be calculated using soft float. However, the

DOI: 10.1109/ICCD58817.2023.00090
PREPRINT - ©2023 IEEE - accepted at 2023 IEEE 41st International Conference on Computer Design (ICCD)

range below 2−968 represents less than 3% of all 64-bit FP
values. An example for the division is given Code 6.

1 if (abs(a) < 4.008336720017946e-292)
2 return soft_fp::div(a, b);
3
4 double r = std::fma(c, b, -a);
5 if (r != 0.) {
6 inexact = true;
7 underflow = (is_subnormal(c) || is_zero(c))
8 ? true : underflow;
9 }

Code 6. C++ code for a 64-bit UpDiv algorithm using a FMA instruction.

V. RESULTS AND DISCUSSION

In the following subsections, the performance results of
our floppy float approach are presented. All experiments were
conducted on a AMD Ryzen Threadripper 3990x running an
Ubuntu 21.10 operating system. The machine can achieve a
boost clock of 4.3GHz.

A. Instruction Benchmark Results

In the previous sections, we made qualitative statements
about the performance of FP simulation approaches. We
claimed that hard float is faster than floppy float, and that
floppy float is faster than soft float. To support these state-
ments with evidence, we developed a benchmark to assess
the performance of the respective approaches. The benchmark
is designed to determine the maximum performance of each
individual instruction. That means, there is no DBT overhead,
inputs and outputs are never subnormal, and there are no data
dependencies between the instructions. Also, the input data
was designed to work optimally with the soft float method.
It should be noted that soft float is sensitive to input data
due to its control-flow-heavy calculations. The results of our
benchmark are shown in Fig. 3. Hard float achieves up to
8500 MIPS for instructions that can be executed in one cycle
(max, min, add, sub, etc.). This is explained by the FP pipeline
of the host processor. Most of the instructions can use 2 of
4 FP pipes provided by the Zen 2 microarchitecture, leading
to 8500MIPS ≈ 2 · 4.3GHz. Some instructions, such as
division, square root, or 64-bit multiplication, require multiple
cycles, which results in lower performance. Nevertheless, hard
float is faster than soft and floppy float in all cases. The
performance of the floppy float approach is in the range of 300-
600 MIPS, and is faster than soft float by up to 5× in some
operations, such as square root. For lightweight operations,
such as min or max, there is no significant difference between
soft- and floppy float.

B. System Benchmark Results

Since our approach is intended to accelerate FP performance
in DBT simulators, a practical performance assessment is
indispensable. For this purpose, we integrated our approach,
the method by Cota et al. [10] (QEMU’s method), and
Bellard’s SoftFP, into the DBT-based RISC-V simulator SIM-
V [20]. This simulator was then used to conduct a per-
formance analysis using well-known FP benchmarks, such

102 103

add32

sub32

max32

min32

mul32

div32

sqrt32

fmadd32

add64

sub64

max64

min64

mul64

div64

sqrt64

fmadd64

MIPS

hard float
floppy float
soft float

Fig. 3. Measuring the performance of soft, floppy, and hard float. Floppy
float refers to the approach presented in this paper, while soft float is based
on SoftFP [5].

as linpack [1], NPB [2], SPEC CPU 2017 [3], and other
representative workloads. The results can be found in Fig. 4.
In the graph, the speedups of the individual benchmarks are
shown, whereby the soft float method was used as a reference
baseline. All benchmarks in Subplot a) were executed with the
default RNE rounding, while Subplot b) represents the same
benchmarks under RUP rounding.

As can be seen in the graph, QEMU’s method and our
approach achieve a speedup of 3× in a best case scenario (see
Subplot a), NPB/ft.A and 508.namd). Also, in most cases, the
performance of our approach is equal to the performance of
QEMU’s approach when RNE rounding is used. As explained
in Section IV, our approach is only faster when underflows
occur and no inexact flags are set, or when a non-default
rounding mode is not used. Since most applications already set
an inexact flag after a few executed instructions, the speedup
gained from an accelerated inexact calculation is marginal.
Also, underflows are seldom, as we could confirm with an
instruction and data study. For example, in the case of the
NPB/ft.A benchmark, not a single underflow occurred in a
total of 3,875,127,289 executed fmadd instructions.

To demonstrate the advantages of our methods, we ran all
benchmarks again under RUP rounding, which is depicted in
Fig. 4 b). Here we can see that QEMU is slower than soft
float in all cases. This can be attributed to the fact that QEMU
first checks the rounding mode before resorting to soft float
(see Code 1). Our method, however, can rectify the result for

DOI: 10.1109/ICCD58817.2023.00090
PREPRINT - ©2023 IEEE - accepted at 2023 IEEE 41st International Conference on Computer Design (ICCD)

le
ne

t-i
nf

er

hi
m

en
o

al
ex

ne
t-t

ra
in

N
PB

/b
t.A

N
PB

/c
g.

A

N
PB

/ft
.A

N
PB

/m
g.

A

50
8.

na
m

d

51
9.

lb
m

54
4.

na
b

52
7.

ca
m

4

lin
pa

ck
32

54
9.

fo
to

ni
k3

d

0

1

2

3
a)

Sp
ee

du
p

lin
pa

ck
32

le
ne

t-i
nf

er

al
ex

ne
t-t

ra
in

hi
m

en
o

N
PB

/b
t.A

N
PB

/c
g.

A

N
PB

/ft
.A

N
PB

/e
p.

A

N
PB

/m
g.

A

50
8.

na
m

d

51
9.

lb
m

52
7.

ca
m

4

54
4.

na
b

54
9.

fo
to

ni
k3

d

0.8

1

1.2

1.4
b)

our method
QEMU’s method

Fig. 4. System benchmark performance of our and QEMU’s method. The performance of soft float is used as the speedup’s baseline. Subplot a) represents
benchmarks executed with the default RNE rounding mode while benchmarks in b) were executed with RUP.

most instructions and set the exception flags without using
soft float. Thus, we achieve speedups of 50% over QEMU
for benchmarks like linpack32. Since the speedup of our
method depends on the executed instructions, we observe a
heterogeneous picture of results. Moreover, the speedups under
RNE cannot be used to infer the speedups under RUP. As
described in Section IV, we do not have a method for 64-
bit FMA instructions, and all presented approaches require
less checks when working on 32-bit data. Hence, single
precision benchmarks, such as linpack32 or machine learning
applications (lenet, alexnet), achieve higher speedups in non-
default rounding modes. Applications that comprise many 64-
bit FMA instructions achieve low to no speedup (see NPB/bt.A
and NPB/cg.A).

VI. CONCLUSION & OUTLOOK

In this work, we have shown how FP instructions can be
efficiently simulated if target and host ISA are different. As a
first step, we conducted a comprehensive analysis of existing
work to create the most complete picture of this topic to date.
We then summarized our findings and complemented them
with our own approaches. The focus of our work was on the
fast computation of inexact/underflow exceptions and different
rounding modes. To emphasize the practical relevance of our
approach, we integrated our method into the RISC-V simulator
SIM-V and compared it with other approaches. This was done
by comparing the achieved performance of well-known FP
benchmarks, such as SPEC 2007, NPB, and linpack. As shown
in the results, the advantage of our approach becomes evident
when a non-default rounding mode is used. In these cases,
our approach is 50% faster than the method used by QEMU.
For default rounding modes, we are on par with QEMU’s
method achieving speedups of up to 3x compared to soft float.
Since the speedup is based on a fast calculation of exception
flags and rounding errors, architectures with non-sticky bits,
such as PowerPC, also benefit for default rounding modes.
As shown in our work, efficient algorithms for 64-bit FMA
instructions were still untouched and remain subject to future
investigations. Also, the efficient simulation of narrower data
types, such as float16, or vector instructions, might be relevant
in future due to the growing interest in machine learning.

REFERENCES

[1] “LINPACK C benchmark,” https://netlib.org/benchmark/linpackc.new,
accessed: 2023-09-15.

[2] “NAS Parallel Benchmarks,” https://www.nas.nasa.gov/software/npb.
html, accessed: 2023-09-15.

[3] “SPEC CPU 2017,” www.spec.org/cpu2017, accessed: 2023-09-15.
[4] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in

Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ser. ATEC ’05. USA: USENIX Association, 2005, p. 41.

[5] ——, “SoftFP,” https://bellard.org/softfp/, 2018, accessed: 2023-09-15.
[6] C. Bertin et al., “A floating-point library for integer processors,” Pro-

ceedings of SPIE - The International Society for Optical Engineering,
vol. 5559, 10 2004.

[7] N. Binkert et al., “The Gem5 Simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, aug 2011.

[8] M. Clark et al., “rv8 - RISC-V simulator for x86-64,” https://github.
com/michaeljclark/rv8, accessed: 2023-09-15.

[9] ——, “rv8: a high performance RISC-V to x86 binary translator,”
CARRV, 10 2017.

[10] E. G. Cota et al., “Cross-ISA Machine Instrumentation Using Fast
and Scalable Dynamic Binary Translation,” in Proceedings of the 15th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, 2019.

[11] T. J. Dekker, “A floating-point technique for extending the available
precision,” Numerische Mathematik, vol. 18, pp. 224–242, 1971.

[12] I. Dooley et al., “Quantifying the interference caused by subnormal
floating-point values,” 01 2006.

[13] R.-V. Foundation, “Spike RISC-V ISA Simulator,” https://github.com/
riscv-software-src/riscv-isa-sim, accessed: 2023-09-15.

[14] Gala, N. and Karasek, M., “RISC-V Architecture Test,” https://github.
com/riscv-non-isa/riscv-arch-test, accessed: 2023-09-15.

[15] Y.-C. Guo et al., “Translating the ARM Neon and VFP Instructions in
a Binary Translator,” Softw. Pract. Exper., vol. 46, no. 12, dec 2016.

[16] J. R. Hauser, “Berkley SoftFloat,” https://github.com/ucb-bar/berkeley-
softfloat-3, 1996, accessed: 2023-09-15.

[17] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
USA: Society for Industrial and Applied Mathematics, 2002.

[18] “IEEE Standard for Binary Floating-Point Arithmetic,” IEEE, 1985.
[19] “IEEE Standard for Floating-Point Arithmetic,” IEEE, 2019.
[20] L. Jünger et al., “SIM-V: Fast, Parallel RISC-V Simulation for Rapid

Software Verification,” DVCON Europe 2022, 2022.
[21] O. Møller, “Quasi Double-Precision in Floating Point Addition,” BIT,

vol. 5, no. 1, pp. 37–50, mar 1965.
[22] M. Perotti et al., “RVfplib: A Fast and Compact Open-Source

Floating-Point Emulation Library for Tiny RISC-V Processors,” in
Embedded Computer Systems: Architectures, Modeling, and Simulation,
A. Orailoglu et al., Eds., 2022.

[23] G. Sarrazin et al., “Virtual Prototyping of Floating Point Units,” ser.
RAPIDO ’16, 2016.

[24] P. Sterbenz, “Floating Point Computation,” 1974.
[25] Y.-P. You et al., “Translating AArch64 Floating-Point Instruction Set

to the X86-64 Platform,” in Proceedings of the 48th International
Conference on Parallel Processing: Workshops, 2019.

https://netlib.org/benchmark/linpackc.new
https://www.nas.nasa.gov/software/npb.html
https://www.nas.nasa.gov/software/npb.html
www.spec.org/cpu2017
https://bellard.org/softfp/
https://github.com/michaeljclark/rv8
https://github.com/michaeljclark/rv8
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-non-isa/riscv-arch-test
https://github.com/riscv-non-isa/riscv-arch-test
https://github.com/ucb-bar/berkeley-softfloat-3
https://github.com/ucb-bar/berkeley-softfloat-3

	Introduction
	Background
	Mathematical Background
	RISC-V Floating Point Arithmetic
	x64 Floating Point Arithmetic
	Simulation Methods

	Related Work
	rv8
	gem5, QEMU pre 4.0.0, Spike
	QEMU post-v4.0.0
	You et al.
	Sarrazin et al.
	FPU Guards

	Methods
	Quick Inexact/Rounding Calculations
	Fast Addition
	Fast 32-bit Multiplication
	Fast 32-bit Division
	Fast Square Root
	Fast 32-bit Fused Multiply-Add
	Fast 64-bit Operations

	Results and Discussion
	Instruction Benchmark Results
	System Benchmark Results

	Conclusion & Outlook
	References

